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Meta-analytic structural equation modeling

Meta-analytic structural equation modeling [MASEM, 2, 8] combines ideas from meta-analysis

and SEM to estimate and test covariance structures assumed to underlie multiple covariance

matrices. MASEMs are usually estimated under two assumptions:

1. Fixed-effects model: All covariance matrices have an identical population covariance matrix

with observed differences due to sampling error.

2. Random-effects model: Covariance matrices have different population covariance matrices

with observed differences due to both differences in population and sampling error.

Alternatively, multiple covariance matrices may be nested within a single study or author such

that the covariance matrices are not independent of each other. There is no systematic MASEM

approach for handling dependent covariance matrices.

Wishart-based MASEM solution

Under the assumption that the data in a study are multivariate normal, the p×p sample covariance
matrix (S) is Wishart:

n∗S ∼ Wp (Σ, n∗) (1)

where n∗ = sample size − 1, Σ (scale matrix) is the population covariance matrix underlying the

study. Assume Σ to be a structured covariance matrix, Σ(θ), e.g. Σ(θ) = ΛΦΛ′ + Θ for a

confirmatory factor model. Accordingly, the fixed-effects MASEM for k studies is:

n∗
i Si ∼ Wp (Σ(θ), n∗

i ) for i ∈ {1, . . . , k} (2)

As an extension to equation 1, Σ may be assumed inverse-Wishart [9]:

Σ ∼ W−1
p (Ω × m, m), (3)

where Ω is the true covariance matrix, and m > p − 1. Equations 1 and 3 form a hierarchical
model for S, resulting in a generalized matrix variate beta type II marginal distribution for S [9, 5]:
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where f (p, x) = ln Γp(x/2) − 0.5 [xp ln(x/2) − xp], and Γp is the multivariate gamma function [5,

definition 1.4.2]. Assuming Ω to be a structured covariance matrix, Ω(θ), leads to a random-
effects MASEM:
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for i ∈ {1, . . . , k} (5)

Assuming j in 1, . . . , c clusters of covariance matrices, the dependent-samples MASEM is:

Sij ∼ GBIIp
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for i ∈ {1, . . . , k}

m2Ψj ∼ W (Ω(θ), m2) for j ∈ {1, . . . , c}
(6)

where Ψj is an unstructured covariance matrix that varies by cluster j.

Notes aboutWishart models

Σ(θ) in equation 2, Ω(θ) in equation 5 and Ω(θ) in equation 6 are assumed to be the true
covariance structure underlying the observed covariance matrices for their respective models.

For the random-effects model: ε = (m − p + 1)−1/2, approximates the root mean square error of

approximation (RMSEA) from assuming (Ω(θ)) matches the different Σi [9].

For the dependent-samples model:

ε(1/2) = (m(1/2) − p + 1)−1/2, ε1 and ε2 are within- and between- RMSEA respectively.

The total RMSEA, ε =
(

(m1 − p + 1)−1 + (m2 − p + 1)−1
)1/2
.

Demonstration

The 14-item Hospital Anxiety and Depression scale [HADS, 10] is widely used to test distress in

non-psychiatric patient populations. 28 correlation matrices of the HADS scale were collated and

meta-analyzed by [6]. For demonstration, I compared two theoretical configurations:

1. Two correlated factors: anxiety (odd-numbered items) and depression (even-numbered items);

2. A bifactor model: general factor with anxiety and depression sub-factors; all uncorrelated.

I fit the three Wishart methods (fixed-effects, random-effects, dependent-samples) to both con-

figurations above resulting in six estimated models. The 28 correlation matrices were clustered

within 21 studies with the following cluster sizes: 1 (18 studies); 3 (2 studies); and 4 (1 study).

We applied Bayesian estimation using Stan [1], and LOOIC [7] for model comparison.

Table 1. Model comparison results sorted by LOOIC

Model LOOIC ∆LOOIC Model weights

Dependent + bifactor −8523.0 – 71.5%

Dependent + correlated −8464.6 −58.4 25.4%

Random-effects + bifactor −7025.2 −1439.4 3.0%

Random-effects + correlated −6669.1 −356.1 < 0.01%
Fixed-effects + bifactor 1699.6 −4969.5 < 0.01%

Fixed-effects + correlated 4321.5 −2621.9 < 0.01%

As with other commonplace information criteria, smaller values of LOOIC suggest better predic-

tive performance of a model. The dependent-samples models had the best performance. Within

any model type, the bifactor model was always the better model configuration. Accordingly, all

additional results focus on the bifactor model.

Figure 1. Model estimates for bifactor models. Dependent-samples estimates have larger uncertainty. Fixed-effects

model incorrectly assumes all covariance matrices have an identical population covariance matrix. Random-effects

model incorrectly ignores non-independence of covariance matrices.

ε was 0.075, 95% CI [.072, .077] and 0.077, 95% CI [0.074, 0.079] for the random-effects and
dependent-samples bifactor models respectively. Based on the dependent-samples model, much

of the variance was between clusters (ε2 = 0.067) as opposed to within clusters (ε1 = 0.040). This
accounts for the smaller uncertainty about estimates from the random-effects model in Figure 1.
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