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Abstract

The root mean square error of approximation (RMSEA) is a commonly used goodness of

fit index in structural equation modeling. For this reason, the RMSEA has been extended

to Bayesian SEMs. However, current methods of computing the RMSEA rely on the

distribution of realized values. As an alternative, we present an approach to Bayesian

estimation of the RMSEA that models the RMSEA as a parameter. By modeling the

RMSEA as a parameter, uncertainty about structural parameters reflects the degree of

model misspecification, yielding more reliable inference. These features of the proposed

approach are demonstrated using a simulation study.

Keywords: model misspecification, Bayesian SEM, Bayesian RMSEA
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Bayesian estimation of the RMSEA

Structural equation modeling (SEM) is a multivariate technique for modeling

covariance structures. In SEMs, the modeler constrains the covariance structure based on

hypotheses about the relations underlying the data. Given the constrained structure or

structured covariance matrix, examining the degree to which the structured covariance

matrix matches the true covariance matrix underlying the data is an important aspect of

SEM – hence the focus on model misspecification. The standard way to assess model

misspecification is to estimate the SEM, then compute the discrepancy between the

structured covariance matrix and the sample covariance matrix. The discrepancy statistic

is hypothesized to follow a particular distribution under the null hypothesis that the

structured covariance matrix is not different from the true covariance matrix underlying

the data. In practice, it is often a question of statistical power whether this null will be

rejected, as the hypothesized structure will rarely ever be the true structure generating the

data. For this reason, a variety of fit indices have been developed for quantifying the

amount of misspecification. These indices function as effect sizes, and are interpreted to

determine the degree to which misspecification is non-trivial.

In the Bayesian context, posterior predictive p-values (PPP, Levy, 2011) computed

using a likelihood ratio discrepancy measure are used to assess the presence of model

misspecification. As with frequentist estimation of SEMs, it is rare to obtain acceptable

PPP values especially when the data are highly informative e.g. with larger samples. For

this reason, Bayesian fit indices have also been developed to quantify the degree of model

misspecification. Levy (2011) proposed a Bayesian standardized root mean squared residual

(SRMR) based on the distribution of realized values of the gap between the model-implied

covariance matrix and the sample covariance matrix. By distribution of realized values, we

mean a distribution of quantities computed based on the posterior distribution of

parameters – these quantities play no direct role in Bayesian model estimation. Similarly,

Hoofs, van de Schoot, Jansen, and Kant (2018) and Garnier-Villarreal and Jorgensen
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(2020) have developed different Bayesian root mean square error of approximation

(RMSEA) statistics both based on the distribution of realized values. Moreover, the work

of Garnier-Villarreal and Jorgensen (2020) introduced additional goodness of fit indices

such as the comparative fit index (CFI) and Tucker-Lewis index (TLI). Differently from

these approaches, Uanhoro (2023b) estimated Bayesian SEMs while simultaneously

modeling a fit index akin to the correlation root mean square residual (CRMR).

In this paper, we present methods for estimating the RMSEA in Bayesian SEMs

with saturated mean structure. This is different from other Bayesian SEM approaches that

return the RMSEA post-model estimation. Our goal in this paper has already been

accomplished in the frequentist literature (Wu & Browne, 2015), and our work here is an

extension. The approach we present accomplishes two things: (i) return parameter

estimates with uncertainty intervals that reflect the degree of model misspecification; (ii)

returns the RMSEA with uncertainty intervals that contribute to examining the degree of

model misspecification. Our work shares these similarities with the approach implemented

by Uanhoro (2023b), the key difference being the goodness of fit index focused on. Notably,

the RMSEA is not a standardized effect size measure as the size of misspecification implied

by the RMSEA depends on several contextual factors (e.g. F. Chen, Curran, Bollen, Kirby,

& Paxton, 2008; Savalei, 2012). The CRMR-type index returned by the approach in

Uanhoro (2023b) is more easily interpretable as it is standardized. However, we agree with

the consensus in the literature that is informative to consider multiple metrics in

evaluating a given model (e.g. Hu & Bentler, 1999; Marsh, Hau, & Grayson, 2005; West,

Taylor, & Wu, 2012). Hence, we find it reasonable to present an approach for estimating

the RMSEA in Bayesian models.

In the next section of the paper, we elaborate the methods we present alongside

their theoretical rationale. Then we conduct a simulation study to assess the adequacy of

the methods we present for computing the RMSEA, alongside extant Bayesian RMSEAs.
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Estimating a Bayesian RMSEA

Under the assumption that n × p data are multivariate normal, the p × p sample

covariance matrix, S, is a Wishart-variable: S ∼ Wp(n∗, Σ/n∗), where n∗ = n − 1 and Σ is

the population covariance matrix underlying the data. Wu and Browne (2015) assume that

Σ is specific to the conditions under which the data were collected. For example, assume

the data are scale data collected from a random sample of college students at a university

in the northeastern U.S. during cold winter months. However, the target of inference or the

population for which the measurement model underlying the scale is hypothesized is

unlikely to be this specific population in this specific time period. And this creates a

difference between Σ and the true population covariance matrix for which the theory is

hypothesized to hold. Wu and Browne (2015) characterize this difference as adventitious

error. In this sense, adventitious error is random error that produces a population

covariance matrix that is specific to a population and the measurement conditions under

which the data were collected from the population. Any investigation analyzing the same

instrument in a different context will similarly be subject to adventitious error, resulting in

a new population covariance matrix for that context.

Wu and Browne (2015) assumed the following data generating mechanism for

population covariance matrix: Σ ∼ W−1
p (m, m × Ω(θ)), where m(> p − 1) is the degrees of

freedom of the inverse-Wishart distribution and Ω(θ) is a structured covariance matrix

representing a hypothesized model. This model is assumed to hold in the true idealized

population under general measurement conditions. As m → ∞, Σ → Ω(θ) and the effect

of adventitious error disappears. In this sense, m−1 is proportional to adventitious error. A

key result in Wu and Browne (2015) is that the quantity, ε = (m − p + 1)− 1
2 , approximates

the RMSEA from assuming the hypothesized model holds for the studied population.

Finally, Σ is an artefact of adventitious error, i.e. it is not of substantive interest.

Conveniently, the marginal distribution of the sample covariance with Σ integrated out is

of known form. It is a generalized matrix beta type-II (GMB-II) distribution:
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S ∼ GBII
p

(
n∗

2 ,
m

2 ,
m

n∗ Ω(θ), 0p×p

)
, (1)

with log-likelihood:

ln L = f(p, m + n∗) − f(p, m) − f(p, n∗) + 1
2


(n∗ − p − 1) ln |S| + m ln |Ω(θ)| − (n∗ + m) ln

∣∣∣∣∣mΩ(θ) + n∗S
m + n∗

∣∣∣∣∣
,

(2)

where f(p, x) = ln Γp(x/2) − 1
2 [xp ln(x/2) − xp], and Γp is the multivariate gamma function

(Gupta & Nagar, 1999, definition 1.4.2). The GMB-II distribution is the same as the

matrix-F distribution presented by Mulder and Pericchi (2018), which has also been used

in the context of Bayesian network psychometrics (Williams & Mulder, 2020).

One can think of the model in equation 1 as a two-level hierarchical model, where m

(or ε) functions similarly to the level-2 precision (or dispersion) term, and n functions

similarly to level-1 precision term. Accordingly, the model relaxes the local independence

assumption, by permitting all indicators to have residual correlations. To see this, note

that the posterior mode of Σ is (mΩ(θ) + n∗S)
/

(m + n∗), i.e. the population covariance

matrix is a weighted mean of the structured covariance matrix and the sample covariance

matrix. Unlike standard SEM models, the population covariance matrix already contains

deviations from the hypothesized covariance structure. These deviations are shrunken

towards zero, and the degree of shrinkage is higher when adventitious error is low relative

to sampling error (m ≫ n).

Hence, the approach here shares connections with other Bayesian approaches that

relax local independence (e.g. J. Chen, 2022; Muthén & Asparouhov, 2012; Uanhoro,

2023b).
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Simulation study

We conduct a simulation study to assess parameter recovery with the proposed

approach. The data generation process (DGP) was:

S ∼ GBII
p

(
n∗

2 ,
m

2 ,
m

n∗ (ΛΛ⊺ + Θ), 0p×p

)
,

Λ⊺ =
[
λ λ · · · λ

]
︸ ︷︷ ︸

p elements

, Θ = (1 − λ2)Ip, m = ε−2 + p − 1

λ ∈ {0.6, 0.8}, ε ∈ {0.04, 0.08, 0.16}, n ∈ {200, 500, 2000}, p ∈ {5, 10, 20}

(3)

such that the factor influence was either weak (R2 = 36%) or strong (R2 = 64%), the

RMSEA, sample size and the number of indicators were ‘small’, ‘medium’ and ‘large’

resulting in 54 design conditions. We simulated 1000 datasets per condition, and analyzed

the data using standard frequentist and Bayesian models as well as the correct model.

Hence, we assess recovery of structural parameters and the recovery across all three

models. Precisely, we assess both the relative bias and empirical coverage of the 90%

interval of the loadings on average, error variance on average and the RMSEA.1 For the

standard Bayesian model, we used the recommended RMSEA in Garnier-Villarreal and

Jorgensen (2020). Bayesian models were fit with Stan (Carpenter et al., 2017) via the

minorbsem package (Uanhoro, 2023a) using default priors. 500 iterations were retained

across 3 chains for inference. All scripts are available at

https://osf.io/dzxh7/?view_only=eb3cdf6c82fa4205a6b3ff40937ab687.

Simulation results

Structural parameters estimates were largely unbiased across methods, Figure 1.

Estimation of the RMSEA was often unbiased for 10 and 20 indicators, while the proposed

1 With the DGP in equation 3, the expected values of loadings and variance parameters are scaled up by√
m

m−p−1 and m
m−p−1 respectively. This follows from the mean of the inverse-Wishart distribution. The

standard frequentist and Bayesian models attempt to the estimate expected values of parameters. Hence,
we adjusted the population parameters accordingly for the standard frequentist and Bayesian models.

https://osf.io/dzxh7/?view_only=eb3cdf6c82fa4205a6b3ff40937ab687
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approach produced upwardly biased RMSEAs when the number of indicators was small,

see Figure 2. With regard to coverage, the proposed approach always had adequate

coverage for both structural parameters and the RMSEA. And the standard frequentist

and Bayesian models produced intervals that had lower coverage than nominal, see

Figure 3. Additionally, the under-coverage of the standard approaches got worse as the

sample size increased (scan any row of results left-to-right in Figure 3), matching results in

Wu and Browne (2015). In summary and as expected, ignoring uncertainty due to

misspecification results in overly confident inference (too narrow uncertainty intervals)

about structural parameters and misfit indices.

Conclusion

We have presented a Bayesian method for estimating the RMSEA by extending the

model of Wu and Browne (2015) to the Bayesian context. The method behaves similarly to

the original approach, i.e. the uncertainty about structural parameters reflects uncertainty

due to model misspecification. One flaw in the method is the tendency to over-estimate the

RMSEA when the number of indicators is low, even though structural parameters are

correctly estimated in this condition. This limitation may be due to either the low number

of indicators or the small nominal model degrees of freedom. We intend to examine this

question in the future.

More broadly, our paper demonstrates a need to account for model misspecification

during model estimation. Uncertainty about model correctness should be reflected in

uncertainty about structural parameters. Broadly, the larger the sample size, the more

power there is to detect misspecification. In the context of the simulation results, the

failure of standard models to account for uncertainty is worsened with larger samples.

Finally, we intend to explore the size of misfit in the context of the proposed

Bayesian RMSEA. The standard RMSEA is known to be influenced by several factors.

Given that the proposed approach allows for identifying a population RMSEA, we intend to

explore how a given RMSEA corresponds to varying degrees of model misfit given changes
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in the structure of the data, such as number of indicators, and the quality of measurement.
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Figure 1
Relative bias of structural parameters

Note. FR = Standard frequentist, BA: Standard Bayesian, WB: Bayesian translation of Wu and
Browne (2015). ‘weak’ and ‘strong’ refer to strength of factor loadings. Ideally, all absolute RB
estimates are under 5%, 10% is a more liberal expectation. Horizontal dashed lines represent the
liberal bounds.
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Figure 2
Relative bias of RMSEA

Note. FR = Standard frequentist, BA: Standard Bayesian, WB: Bayesian translation of Wu and
Browne (2015). ‘weak’ and ‘strong’ refer to strength of factor loadings. Ideally, all absolute RB
estimates are under 5%, 10% is a more liberal expectation. Horizontal dashed lines represent the
liberal bounds.
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Figure 3
Empirical coverage of 90% interval

Note. FR = Standard frequentist, BA: Standard Bayesian, WB: Bayesian translation of Wu and
Browne (2015). ‘weak’ and ‘strong’ refer to strength of factor loadings. Ideally, coverage estimates
fall within ±2.5% of 90%, ±5% is a more liberal expectation. Horizontal dashed lines represent the
liberal bounds.
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