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Introduction



Study context

Misspecification is active research area for Bayesian SEMs

• Levy (2011): Posterior predictive checking using the likelihood

ratio test; Bayesian SRMR

• Hoofs, van de Schoot, Jansen, and Kant (2018): Bayesian

RMSEA

• Garnier-Villarreal and Jorgensen (2020): Several translations

of frequentist fit indices: RMSEA, CFI, TLI, . . .

• Cain and Zhang (2019): Deviance information criterion

• Fit hypthesized model
then7−−→ compute misspecification
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Current approach

Fit hypthesized model and estimate misspecification

simultaneously

• Wu and Browne (2015) in frequentist context:

• Parameter estimates have greater uncertainty about them

reflecting degree of model misspecification

• Estimates the RMSEA as a model parameter

• We could simply recreate Wu and Browne (2015) in a
Bayesian context, but:

• The RMSEA is not so easy to interpret (e.g. Chen, Curran,

Bollen, Kirby, & Paxton, 2008; Savalei, 2012)

• The SRMR has clearer interpretations.

• Model misspecification so parameter estimates reflect degree

of model incorrectness, while estimating an SRMR-type index.
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Model



CFA as an example

Begin with Muthén and Asparouhov (2012):

Σ = ΛΦΛT +∆︸ ︷︷ ︸
Standard

+Ψ (1)

Λ: Loading matrix, Φ: Interfactor correlation matrix, ∆: Standard

residual covariance matrix (often diagonal)

Ψ: Residual covariance matrix, with all off-diagonal elements

estimated.

• Theoretically: Assumed to reflect the influence of minor

factors (MacCallum & Tucker, 1991)

• Practically: Ψ is not identified. Muthén and Asparouhov

(2012) used an inverse-Wishart prior with known parameters

to shrink elements in Ψ to zero.
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Goal is to model misspecification

Σ=ΛΦΛT+∆︸ ︷︷ ︸
Standard

+Ψ

Let ψij (i ̸= j) be off diagonal elements in Ψ, reflecting

misspecification / minor factor influences.

To model minor factor influences:

ψij√
σjjσii︸ ︷︷ ︸
SRCs

∼ N (0, τ), τ ∼ N+(0, 1)

σii/jj : indicator variances i.e. SRCs: standardized residual

covariances.
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A hierarchical model for SRCs

ψij√
σjjσii︸ ︷︷ ︸
SRCs

∼ N (0, τ), τ ∼ N+(0, 1)

Implications

• SRCs are assumed to be zero on average

• SRC scale parameter (τ) is the root mean square error of

SRCs with location constrained to be zero

• τ is akin to the correlation root mean square residual (CRMR)

• Smaller values of τ reflect a model with smaller SRCs, lower

misspecification OR smaller influence of minor factors

• τ < 0.05 =⇒ most SRCs < 0.10
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Simulation studies



Three simulation studies

List of simulation studies

1. Can the proposed approach recover model parameters?

• Yes, upcoming

2. Can differences in τ between competing models be used for
model selection?

• Lacks power, more promising to use approximate

leave-one-out cross validation to select between competing

models.

3. Can the Ψ matrix be used to detect specific residual
covariances that are too large?

• Yes, especially for larger samples.
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Study 1: Recovery of structural parameters

Simulate data with minor factor influences (Ψ)

5 modeling approaches

• Two ignore minor factor influences:

1. Freq: Standard frequentist

2. Baseline: Standard Bayesian

• One fixes the size of minor factor influences:

3. AZ: Muthén and Asparouhov (2012)

• Two estimate the size of minor factor influences:

4. LKJ: another proposed method (in paper)

5. NRM: hierarchical normal method (focus here)

Results: Bias adequate; Coverage poor for methods that ignore or

fix the size of the influence of minor factors
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Study 1: Empirical coverage rate of 90% CI

Coverage of structural parameters and τ ′

L: loading; RV: residual variance; rho: interfactor correlation

Findings:

• Freq and Baseline models

fail when sample size or τ

is large

• Performance of AZ model

deteriorates at large τ

• Methods that estimate

the size of minor factor

influences perform as

expected
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An empirical example: Hospital Anxiety and Depression scale

Bifactor model parameters, n = 21820, τ = 0.028. Note narrow intervals for the

Standard approach.

LX.Y are loadings of factor Y on item X; RV: residual variances. Standard estimates are from a model without Ψ.
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Closing



Discussion

Discussion points / future work

• Approach works for fitting hypothesized models

simultaneously with misspecification

• There is an R package for this: minorbsem

• Package also includes:

• Implementation of Wu and Browne (2015) method, other

priors for standardized residual covariances e.g. lasso,

generalized double Pareto (global-local)

• Global-local prior on all cross-loadings, relaxing simple

structure

• Extensions to other data (e.g. binary)

• Additional issues/extensions are on GitHub:

https://github.com/jamesuanhoro/minorbsem/issues/3
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