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Abstract

We develop a confirmatory factor analysis (CFA) model under the assumption that the data

are Poisson. The estimation method is Bayesian, and we provide prior specifications for

model parameters. Bayesian Poisson CFA of a single simulated dataset (n = 300) shows that

the method performs acceptably in terms of parameter recovery, and the parameter

estimates are similar to maximum likelihood estimates. We extend the Poisson CFA to

cross-classified data. Analysis of a single simulated dataset (n = 300), with two crossed

hierarchies shows acceptable parameter recovery for the Bayesian approach. These

preliminary results suggest that the Bayesian approaches we developed may be adopted for

CFA of single or multilevel Poisson item indicators.
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Bayesian estimation of Confirmatory Factor Analysis for Count Data with extensions for

cross-classification

Confirmatory factor analysis (CFA) is a structural equation modeling (SEM) approach

for measurement models. The major focus of a CFA is the relationship between item

indicators and latent traits or factors as captured by factor loadings (Brown, 2006;

Schumacker & Lomax, 2004). Additionally, the relationship between the factors is often of

interest. These factor loadings and interfactor correlations may sufficiently characterize the

relationship between the item indicators, such that CFA can be viewed as a data reduction

technique (Bollen, 1989, p. 227).

In this paper, we present CFA methods assuming the data are Poisson distributed.

Our estimation method is Bayesian primarily for the reason laid out by Kruschke (2013) − a

Bayesian analysis yields more information about parameters of interest relative to an

analogous frequentist analysis. And our Bayesian computational engine of choice is Stan

(Carpenter et al., 2017), which we accessed using R, both software are free.1

Our contribution here is of value for a number of reasons. Outside of Mplus − which is

not free software, we failed to find a CFA implementation for count data, although there are

frequentist item response models for count data (e.g. Magnus & Thissen, 2017; Wang, 2010).

Additionally, count data appear in educational settings, especially in the study of behaviours,

see examples in Wang (2010). We also provide extensions to the Poisson CFA to account for

multilevel data structures since such structures are commonplace in educational settings

(Goldstein, 1995). Finally, the Poisson model we present is a foundation for more flexible

modeling alternatives; hence, our work here is a first step in CFA analysis of count data.

In the remainder of this paper, we lay out the model specification for the Poisson CFA.

We then present the Bayesian estimation approach with prior choice recommendations. Next,

1 If our work is accepted, we will provide a link to a GitHub gist file containing all our R and Stan code.
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we show the Bayesian method recovers the parameters of interest using data we simulate. We

extend the Poisson CFA to account for cross-classified data and show acceptable parameter

recovery using simulated data. Finally, we end with recommendations for future research.

Poisson CFA

With continuous indicator CFA, we assume (Bollen, 1989, Eq. 7.1):

x = Λξ + δ, E(ξ) = 0, E(δ) = 0, Cov(ξ, δ) = 0 (1)

where x is a p-dimensional vector of p observed variables (item indicators) in deviation

form (mean-centered), Λ is a p×m factor loading matrix for p observed variables and m

latent variables, ξ is an m-dimensional vector of m latent variables, and δ is a p-dimensional

vector of error terms, one for each observed variable. One can decompose the p× p

model-implied covariance matrix of x (Bollen, 1989, Eq. 7.5):

E(xx′) = E
[
(Λξ + δ)(Λξ + δ)′

]
= E

[
(Λξ + δ)(ξ′Λ′ + δ′)

]
= ΛE(ξξ′)Λ′ + E(δδ′) ⇐⇒ Cov(ξ, δ) = 0

= ΛΦΛ′ + Θ

(2)

where Φ is an m×m inter-factor covariance matrix, and Θ is a p× p residual

covariance matrix. Of concern is model identification or the existence of a unique solution for

Λ, Φ and Θ. For identification purposes, we can standardize the latent variables, ξ, to have

unit variance
(
diag(Φ) = 1m

)
such that Φ is the inter-factor correlation matrix. It is also

typical to constrain several elements in Λ and most off-diagonal elements in Θ to zero for

model identification and to match the hypothesized factor structure (Bollen, 1989, p. 239).
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Assuming that x is multivariate normal
(
x ∼ Np(0,ΛΦΛ′ + Θ)

)
provides a maximum

likelihood (ML) approach for estimating the model parameters. At this juncture, we can

develop the Poisson model. We replace x in the formulation above with η, and assume η is a

p-dimensional vector of p latent variables in deviation form. Hence:

η = Λξ, E(ηη′) = ΛΦΛ′ and η ∼ Np(0,ΛΦΛ′) (3)

We represent the observed count indicators with y, a p-dimensional vector of p count

indicators. We represent y in long form as yg, a (p · n)-dimensional column vector, where n

is the number of respondents to the items. Similarly, ηg is the long-form version of η, such

that ηg is a (p · n)-dimensional column vector. Then the Poisson CFA is:

yg ∼ Poisson
(

exp
(
ν + ηg + ln(φ)

))
(4)

where ν represents the intercept parameter on the log-scale, such that ν contains p

distinct elements. ν + ηg is the mean of the observed Poisson data on the log scale, and φ is

the offset variable which can be used to model the data as rates. If we set φ = 1, the offset

has no effect on model estimation. We note that the assumption of multivariate normality on

η in equation 3 is a simply “device” for model estimation, and a researcher may assume

alternative multivariate distributions. Additionally, model identification considerations on Λ

and Φ continue to apply.
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Bayesian estimation

We follow a subjective Bayesian approach (Goldstein, 2006) in the manner precribed

by Greenland (2006). Greenland (2006) recommended using the middle 95% interval of prior

distributions to a-priori identify the plausible values for parameters; we adopt this

recommendation. We assume that factor loadings span the real number line. However, we

select one loading per factor that we constrain to be positive − the vector of these marker

loadings is λm, and the vector of all other loadings in Λ that are not constrained to be zero

or positive is λnm. Also, let L be the Cholesky factor of Φ, Φ = LL′. Then the Bayesian

model is:

yg ∼ Poisson
(

exp
(
ν + ηg + ln(φ)

))
likelihood

η ∼ Np
(
0,Λ(LL′)Λ′ + δ1

)
, δ = 0.01 to ensure positive definiteness

λm ∼ N+(0, σλ) , λnm ∼ N (0, σλ) , σλ ∼ N+(0, 1)

L ∼ LKJchol(τ) , ν ∼ N (0, σν)

(5)

Similarly to software defaults in Mplus (Muthén & Asparouhov, 2012) and blavaan

(Merkle & Rosseel, 2018), we assume the loadings are normally distributed; the marker

loadings are assumed half-normal. We assume a standard half-normal prior for σλ. Hence,

there is an a-priori 95% chance that σλ will be under 2. This prior permits a considerable

95% plausible interval for non-zero loadings, approximately (−4, 4). Precisely,

Pr(0 < σλ < 1.96) = 95%, and Pr(−3.84 < λ < 3.84) = 95%. Other choices for the prior on

σλ include inverse-gamma on σ2
λ and half-Cauchy/t on σλ (Gelman, 2006).

For L, we assume an LKJ-prior (Lewandowski, Kurowicka, & Joe, 2009)

reparameterized for the Cholesky factor as recommended by the Stan manual (Stan
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Development Team, 2018, sec. 63). For the shape parameter, τ , we recommend a value of 2

to reduce the probability of extremely positive or negative correlations between factors. And

we recommend σν = 2.5, implying Pr(−5 < ν < 5) = 95%. This prior on ν permits means

over 100, exp(5) = 148.

All prior recommendations here are defaults and we expect that in certain situations,

such as when the data do not contain much information, researchers will need alternative or

stronger priors.

Example using simulated data

Simulated dataset. We simulated a dataset according to equations 3 and 4 to test

parameter recovery of the proposed Bayesian model. We set ν = ln([1, 1.25, 1.5, . . . , 3]),

n = 300, p = 9, φ = 1 and:

Λ =



1.3 0 0
1.0 0 0
0.7 0.4 0
0 1.3 0
0 1.0 0

0.3 0.7 0
0 0 0.8
0 0 0.9
0 0 1.0



, Φ =


1.0 0.4 0.3
0.4 1.0 −0.3
0.3 −0.3 1.0



Given the parameters, there are cross-loadings in the data; factor 1 is positively related

with factors 2 and 3, and factor 2 and 3 are negatively related. We added 10−9 to the

diagonal of ΛΦΛ′ to ensure the matrix was positive-definite. We present the simulated data

in Figure 1. The items with larger factor loadings (e.g. 1 and 4) had larger ranges.
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Bayesian analysis. We used Stan to fit the Bayesian model. Stan uses the

No-U-Turn sampler (NUTS). NUTS, an algorithm for sampling continuous parameters, is

more efficient than the Gibbs sampler (Hoffman & Gelman, 2014). For Bayesian parameter

estimation, we drew 2000 posterior samples across 4 parallel chains, and retained the final

half of the samples within each chain. This left us with 4000 samples for inference. As a

crude check of sampling convergence, we computed the potential scale reduction factor (R̂)

and effective sample size (neff) for the posterior samples of parameters. R̂ close to 1 and neff

above a thousand are preferred (Carpenter et al., 2017). The marker iterms for the Bayesian

analysis were items 1, 4 and 7, hence their loadings were constrained to be positive.

We performed the same analysis using ML estimation in Mplus. On a laptop with a 3.5

GHz i7 processor running on Ubuntu, Stan converged in 253 seconds while Mplus converged

in 158 seconds. All neff values for the loadings, intercepts, and interfactor correlations were

above 2000, and all R̂ were one to two decimal places. We compared the parameter

estimates to the population values in Figure 2. The Bayesian point estimates and ML point

estimates were near-identical, and for most parameters, these estimates were close to their

population values. The advantage of the Bayesian approach is our ability to use the posterior

samples to make probabilistic statements about the estimated parameters given the data.

For example, an analysis of the posterior samples of the loadings revealed that there was a

four in five chance that the loading of item 1 on factor 1 (λ11) was greater than all other

loadings, #
(
λ11 = max(λij)

)
/4000 = .83, for i = [1, 2, . . . , 9], j = [1, 2, 3], where #(·) is the

count function.

Extension to multilevel data structures

To demonstrate the flexibility of a Bayesian approach, we extend the Poisson CFA to

cross-classified data structures:
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yg = Poisson
(

exp
(
ν + ηg + Zγ + ln(φ)

))
; Z ∼ Nk(0,1) , γ ∼ N+(0, 1) (6)

where Z is a (p · n)× k matrix of k uncorrelated random effects, and each random

effect is standard normal. γ is a k-dimensional vector of loadings, one for each random effect

in Z. In this model, we claim that each random effect/latent variable in Z represents a

grouping structure. The effect of each grouping structure i.e. the loading (e.g. γ1 for

grouping structure 1) is the same across all items − this is a restriction that can be relaxed.

Finally, we assume a standard half-normal prior for the loadings. The specification for the

cross-classified Poisson CFA in equation 6 leverages the connection between generalized

linear mixed models and structural equation modeling, and subsumes nested data structures

(e.g. Rabe-Hesketh, Skrondal, & Pickles, 2004; Rabe-Hesketh, Skrondal, & Zheng, 2007).

To make the above concrete, we provide an example. Assume five count indicators

measure a single factor. The respondents are 300 students who attend 50 different schools

and live in 30 different neighbourhoods. And both schools and neighbourhoods influence the

students’ responses on the count indicators. Figure 3 captures this structure, and we

simulated data according to this structure. The data were balanced with 6 students per

school and 10 students per neighbourhood.

We analyzed the simulated data using both the original Poisson CFA and the

cross-classified Poisson CFA (CCPCFA). We used item one as our marker variable. We

retained the same estimation settings from the earlier example. The results are available in

Figure 4. Stan converged in 154 and 251 seconds for the Poisson CFA and CCPCFA

respectively. For the Poisson CFA, all neff values for the loadings, and intercepts were above

3000, and all R̂ were one to two decimal places. However, for the regular Poisson CFA, neff

values were somewhat lower but still aceptable, we report them in Figure 4. R̂ for estimated
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parameters were at most one to two decimal places.

The standard Poisson CFA consistently overestimated the student-level loadings. On

the other hand, the CCPCFA model demonstrated adequate recovery of the student-level

loadings. The estimate for the school loading was closer to the parameter than the estimate

of the neighbourhood loading. We found that we could increase the neff for the school

loading (985) by reducing the scale of the prior on the loadings, e.g. γ ∼ N (0, 0.5); we do

not report those results here.

Discussion

In this study, we have presented a Bayesian CFA for count indicators that are Poisson,

with extensions for multilevel data. We are not aware of other instances in the literature of

Bayesian estimation of count CFA for multilevel data. Second, the approach presented here

will scale to other types of non-normal data. For example, one can use a negative binomial

likelihood in place of a Poisson likelihood to model overdispersed counts, while retaining the

same structure in equations 5 and 6. When the data are truncated, e.g. “how many days in

the last 30 days did . . .?”, then a truncated Poisson or negative binomial distribution may be

adequate. All of these options are possible in Stan.2

We simplified the CFA by omitting residual covariances between count indicators.

Selectively estimating residual covariances poses a challenge for Bayesian analysis because

one cannot simply estimate relevant covariances independently, or we run the risk of

estimating non-positive definite covariance matrices. We see two promising approaches. One

is the approach adopted by Muthén and Asparouhov (2012) for Gaussian data where one

estimates the complete residual covariance matrix, using strong priors to ensure the model is

identified. Another is the parameter extension approach recommended by Palomo, Dunson,

2 The code snippet we intend to provide on GitHub will include a negative-binomial CFA example in Stan.
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and Bollen (2007), and implemented by Merkle and Rosseel (2018) for Gaussian CFA.

Finally, we did not explore model fit assessment. We see two promising approaches.

One is to develop a Poisson CFA where the data on the log-scale are multivariate normal

with an intercept per indicator, and the full covariance matrix of all indicators − hence a

baseline model. The practitioner can then use Bayesian model comparison (Vehtari &

Ojanen, 2012) to select a working model from one or more hypothesized factor structures

and the baseline model. Another approach is the posterior predictive checking approach used

by Muthén and Asparouhov (2012) to assess a model without needing to estimate a baseline

model. We intend to explore residual covariances and model fit assessment in future studies.



BAYESIAN COUNT CFA 12

References

Bollen, K. A. (1989). Structural equations with latent variables (p. 514). Hoboken, NJ, USA:

John Wiley & Sons, Inc. doi:10.1002/9781118619179

Brown, T. A. (2006). Introduction. In Confirmatory factor analysis for applied research (pp.

1–11). New York: The Guilford Press.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., . . .

Riddell, A. (2017). Stan: A probabilistic programming language. Journal of

Statistical Software, 76 (1). doi:10.18637/jss.v076.i01

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models

(comment on article by Browne and Draper). Bayesian Analysis, 1 (3), 515–534.

doi:10.1214/06-BA117A

Goldstein, H. (1995). Multilevel statistical models. London: Arnold.

Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. Bayesian

Analysis, 1 (3), 403–420. doi:10.1214/06-BA116

Greenland, S. (2006). Bayesian perspectives for epidemiological research: I. Foundations and

basic methods. International Journal of Epidemiology, 35 (3), 765–775.

doi:10.1093/ije/dyi312

Hoffman, M. D., & Gelman, A. (2014). The No-U-turn sampler: adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15 (1),

1593–1623. Retrieved from https://dl.acm.org/citation.cfm?id=2627435.2638586

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental

Psychology: General, 142 (2), 573–603. doi:10.1037/a0029146

https://doi.org/10.1002/9781118619179
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA116
https://doi.org/10.1093/ije/dyi312
https://dl.acm.org/citation.cfm?id=2627435.2638586
https://doi.org/10.1037/a0029146


BAYESIAN COUNT CFA 13

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices

based on vines and extended onion method. Journal of Multivariate Analysis, 100 (9),

1989–2001. doi:10.1016/J.JMVA.2009.04.008

Magnus, B. E., & Thissen, D. (2017). Item response modeling of multivariate count data

with zero inflation, maximum inflation, and heaping. Journal of Educational and

Behavioral Statistics, 42 (5), 531–558. doi:10.3102/1076998617694878

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via

parameter expansion. Journal of Statistical Software, 85 (4), 1–30.

doi:10.18637/jss.v085.i04

Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more

flexible representation of substantive theory. Psychological Methods, 17 (3), 313–335.

doi:10.1037/a0026802

Palomo, J., Dunson, D. B., & Bollen, K. A. (2007). Bayesian structural equation modeling.

In S.-Y. Lee (Ed.), Handbook of latent variable and related models (pp. 163–188).

Elsevier/North-Holland.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural

equation modeling. Psychometrika, 69 (2), 167–190. doi:10.1007/BF02295939

Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel structural equation

modeling. In S.-Y. Lee (Ed.), Handbook of latent variable and related models (pp.

209–227). Elsevier/North-Holland.

Schumacker, R. E., & Lomax, R. G. (2004). Factor analysis. In A beginner’s guide to

structural equation modeling (pp. 85–105). Routledge.

Stan Development Team. (2018). Stan modeling language users guide and reference manual.

https://doi.org/10.1016/J.JMVA.2009.04.008
https://doi.org/10.3102/1076998617694878
https://doi.org/10.18637/jss.v085.i04
https://doi.org/10.1037/a0026802
https://doi.org/10.1007/BF02295939


BAYESIAN COUNT CFA 14

Retrieved from http://mc-stan.org

Vehtari, A., & Ojanen, J. (2012). A survey of Bayesian predictive methods for model

assessment, selection and comparison. Statistics Surveys, 6, 142–228.

doi:10.1214/14-ss105

Wang, L. (2010). IRT–ZIP modeling for multivariate zero-inflated count data. Journal of

Educational and Behavioral Statistics, 35 (6), 671–692. doi:10.3102/1076998610375838

http://mc-stan.org
https://doi.org/10.1214/14-ss105
https://doi.org/10.3102/1076998610375838


BAYESIAN COUNT CFA 15

item7 item8 item9

item4 item5 item6

item1 item2 item3

0 5 10 0 5 10 15 20 0 10 20 30

0 20 40 60 0 10 20 30 0 10 20 30

0 25 50 75 100 0 10 20 30 40 0 10 20
0

25
50
75

100

0

20

40

60

0

20

40

0

40

80

120

0

20

40

60

0

20

40

0
50

100
150
200

0

50

100

0

20

40

60

Simulated Poisson data

F
re

qu
en

cy

Figure 1 . Histograms of simulated data. The axes are different for each item.
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Figure 2 . Result of Bayesian Poisson CFA applied to simulated data. The thick lines are the
interquartile range, and the thin lines are the middle 95% of posterior samples. There is no
population value for sigma(lambda) as it is a hyperparameter for Bayesian model estimation.
We only provide the Mplus point estimate.
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parameters. The intercepts are at the person level, and we assumed the intercepts at the
school and neighbourhood levels are zero.
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