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Abstract
We present an approach to meta-analytic structural equation models that
relies on hierarchical modeling of sample covariance matrices under the as-
sumption that the matrices are Wishart. The approach handles the com-
monplace fixed- and random- effects meta-analytic SEMs, and solves the
problem of dependent covariance matrices where more than one covariance
matrix is obtained from a single study or study author. The ability of the
approach to adequately recover parameters is examined via a simulation
study. The approach is implemented in the bayesianmasem R package and
a demonstration shows applications of the model.

Structural equation modeling (SEM) is a popular multivariate data analysis technique for
modeling covariance structures. Meta-analytic SEM (MASEM, Cheung & Chan, 2005; Viswesvaran
& Ones, 1995) combines ideas from meta-analysis (Hedges & Olkin, 1985) and SEM to identify the
covariance or correlation structure underlying observed covariance or correlation matrices. When
collating sample covariance or correlation matrices, several matrices may be obtained from the same
paper, or the same (set of) authors. This creates dependencies between observed matrices and has
the potential to distort MASEM estimation and inference. In this paper, we present a Wishart-
based MASEM to handle the case of dependent covariance matrices. We focus on latent variable
models, thus excluding meta-analytic path models, though the model may easily be extended to
meta-analytic path models. Before discussing the approach, we briefly review some established
MASEM methods.

The most well-known MASEM method is two-stage SEM (TSSEM, Cheung & Chan, 2005,
2009). In TSSEM, the meta-analysis is usually done on sample correlation matrices. In the first
step, the practitioner computes the average correlation matrix from the constituent correlation
matrices. In the second step, the practitioner estimates the hypothesized SEM on the average
correlation matrix using weighted-least squares estimation which accounts for uncertainty about
the computed average correlation matrix. The most important decision in TSSEM is made in the
first step where the modeller either assumes a fixed-effects or random-effects model. In the fixed-
effects model, the same correlation matrix is believed to underlie the observed correlation matrices
with differences between the observed matrices attributed to sampling error often assumed to be
of known form (e.g. equations 3 – 5 in Olkin & Finn, 1995). In the random-effects model, each
correlation matrix is assumed to arise from a distinct population correlation matrix, such that
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differences in the observed correlation matrices are due to both different populations and sampling
error. The different populations are typically operationalized as multivariate normal deviations from
the average true correlations. Practically, the recommendation between a fixed- or random-effects
model is based on the size of the gap between the observed correlation matrices after accounting for
sampling error. This gap is operationalized using standard SEM goodness of fit indices such as the
root mean square error of approximation (RMSEA) and standardized root mean square residual
(SRMR). When these fit indices are judged acceptable, a fixed-effects model is assumed to be a
reasonable approximation to the patterns in the data.1

An alternative MASEM method is one-stage maximum-likelihood method (ML-MASEM,
Oort & Jak, 2016), which fits a multi-group SEM to the observed correlation matrices with the
parameter estimates constrained to be identical across studies. Hence, ML-MASEM is a fixed-effects
approach. ML-MASEM has been recently extended to include random-effects models and study-
level moderators (OSMASEM, Jak & Cheung, 2020), such that heterogeneity of parameters across
studies can be accounted for and explained. ML-MASEM is asymptotically equivalent to TSSEM
(Yuan & Kano, 2018), while OSMASEM improves over TSSEM. Both TSSEM and OSMASEM are
implemented in the metaSEM R package (Cheung, 2015).

A conceptually different approach to MASEM is parameter-based MASEM (Cheung &
Cheung, 2016). Conceptually, a multi-group SEM is fit to the correlation matrices with the param-
eter estimates freed to be different across studies. Alternatively, the parameter estimates may be
directly extracted from multiple study reports. The resulting parameter estimates are then meta-
analyzed. An interesting contribution to this tradition is to hierarchically model the parameter
estimates across studies using Bayesian estimation within a one-stage model (Ke, Zhang, & Tong,
2019). Each parameter estimate may then be summarized via an estimated mean and standard de-
viation. This approach is conceptually appealing as it extends the benefits of hierarchical modeling
to MASEM parameter estimation.

In the next section of the paper, we lay out the proposed Wishart methods for MASEM.
Then we provide simulation results that show the method allows for valid inference and parameter
recovery. Afterward, we present a data analysis example that shows some of the properties of the
proposed MASEM methods. We then conclude with discussion of the approach and some thoughts
for further developing the approach. Finally, code for simulation studies and data analysis examples
is available at https://osf.io/yd5q4/.

Wishart-based MASEM

Our work builds on a Wishart-based Bayesian approach to random-effects MASEM (Uan-
horo, 2023). Here, we develop the Wishart-based MASEM as a complete system for MASEMs in-
cluding fixed-effects, random-effects and dependent samples MASEM. For Wishart-based MASEM,
one meta-analyzes the covariance matrices directly when they are available, as opposed to the cor-
relation matrices as typical in TSSEM.

We begin with the observation that the p × p sample covariance matrix, S, for n × p
multivariate normal data is a Wishart matrix:

n∗S ∼ Wp
(
Σ, n∗), (1)

1Although this is the convention with TSSEM, we believe that random-effects models should be preferred by
default as it is unlikely that different studies sample the exact same population. Moreover, the classification of a fit
index as ‘small’ is not straightforward (e.g. McNeish, An, & Hancock, 2018; Savalei, 2012; Ximénez, Maydeu-Olivares,
Shi, & Revuelta, 2022).

https://osf.io/yd5q4/
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where n∗ = n − 1, Σ (scale matrix) is the population covariance matrix underlying the data. As
n∗ → ∞, S → Σ, and the effect of sampling error is negligible.

Fixed-effects model

The sum of k Wishart matrices that share a common scale matrix is itself Wishart with the
same scale matrix (Gupta & Nagar, 1999, Theorem 3.3.8):

k∑
i=1

[
n∗

i Si
]

∼ Wp

(
Σ,

k∑
i=1

n∗
i

)
if (n∗

i Si) ∼ Wp
(
Σ, n∗

i

)
for i ∈ {1, . . . , k}, (2)

where Σ in equation 2 is the pooled covariance matrix under a fixed-effects model. Σ may be
further assumed to be a structured covariance matrix, Σ(θ), such that one directly estimates the
SEM parameters, θ. Hence, this would be a one-stage fixed-effects MASEM. For meta-analytic
confirmatory factor analysis (CFA) (the most common latent-variable MASEM2), the one-stage
fixed-effects MASEM for k covariance matrices is:

k∑
i=1

[
n∗

i Si
]

∼ Wp

(
ΛΦΛ′ + ∆,

k∑
i=1

n∗
i

)
, (3)

where Λ is the loading matrix with certain elements set to 0 based on model identification and
substantive considerations, Φ is the inter-factor correlation matrix and ∆ is the residual covariance
matrix. The uncertainty in the observed covariance matrices is assumed a function of study sample
sizes (and the Wishart distribution).

Random-effects model

Given equation 1, the population covariance matrix, Σ, may be assumed to be inverse-
Wishart (Wu & Browne, 2015):

Σ ∼ W−1
p (Ω × m, m), (4)

where Ω is the true covariance matrix underlying the population covariance matrix and m > p − 1
is the degrees of freedom and functions as a precision parameter – as m → ∞, Σ → Ω. Wu
and Browne (2015) assumed Ω to be a structured covariance matrix, Ω(θ), such that differences
between Σ and Ω(θ) are due to what Wu and Browne (2015) term adventitious error – error that
arises because the exact study population differs from the hypothetical population for which the
psychometric theory holds.

The models in equations 1 and 4 form a hierarchical model for S – the primary interest is
in estimating Ω not Σ. Integrating Σ out, the resulting marginal distribution for S is a generalized
matrix variate beta type II (GMB-II) distribution (Granström & Orguner, 2011; Wu & Browne,
2015):

S ∼ GBII
p

(
n∗

2 ,
m

2 ,
m

n∗ Ω, 0p×p

)
, (5)

with log-likelihood:
2Although path and regression models are the most common MASEMs, these models do not involve latent vari-

ables.
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ln L = f(p, m + n∗) − f(p, m) − f(p, n∗) + 1
2

(

(n∗ − p − 1) ln |S| + m ln |Ω| − (n∗ + m) ln
∣∣∣∣∣mΩ + n∗S

m + n∗
i

∣∣∣∣∣
)

,

, (6)

where f(p, x) = ln Γp(x/2)− 1
2 [xp ln(x/2) − xp], and Γp is the multivariate gamma function (Gupta

& Nagar, 1999, definition 1.4.2).
The model in equation 5 is a hierarchical model for S and may be extended to a one-stage

random-effects MASEM for k covariance matrices (Uanhoro, 2023):

Si ∼ GBII
p

(
n∗

i

2 ,
m

2 ,
m

n∗
i

Ω(θ), 0p×p

)
for i ∈ {1, . . . , k} (7)

where Ω(θ) is the pooled structured covariance matrix, e.g. Ω(θ) = ΛΦΛ′ + ∆.
The uncertainty in this model is a function of the sample sizes of the constituent studies

and the m parameter. m is a precision parameter that captures the average gap of the different
population covariances underlying each study to the shared covariance structure, Ω(θ). A simple
transformation of m eases its interpretation, ε = (m − p + 1)−1/2, where ε is the RMSEA (Wu &
Browne, 2015).3 When ε is low, a fixed-effects model may provide a reasonable approximation to
the patterns underlying the observed covariance matrices. Additionally, ε may be assumed different
for different studies, and can be modeled to create a meta-regression (Uanhoro, 2023). However,
our intent here is to broadly lay out Wishart-based MASEMs, so we assume a constant ε across
studies.

Dependent-samples model

Assuming k covariance matrices were obtained from c clusters of covariance matrices, we
propose the following hierarchical model for dependent covariance matrices:

Sij ∼ GBII
p

(
n∗

i

2 ,
m1
2 ,

m1
n∗

i

Ψj[i], 0p×p

)
for i ∈ {1, . . . , k}

m2Ψj ∼ W (Ω(θ), m2) for j ∈ {1, . . . , c}
(8)

where Ψj is an unstructured covariance matrix that varies by cluster j. Ψj is assumed Wishart
with a scale parameter that is the true structured covariance matrix, Ω(θ). Hence, this remains a
hierarchical model; the within-cluster variation is controlled by m1 (precisely: v1 = (m1 −p+1)−1)
and the between-cluster variation is controlled by m2 (v2 = (m2 − p + 1)−1); such that v1 + v2 = v,
where v is the variation between population covariances and the pooled structured covariance
matrix in the standard random-effects model. Additionally, the overall (ε), within-cluster (ε1)
and between-cluster (ε2) RMSEAs can be computed, ε(1/2) = 1/

√
m(1/2) − p + 1. Finally, the

proportion of variance that is between-cluster may also be of interest, ρ = v2(v1 + v2)−1. ρ is akin
to the intraclass correlation coefficient in multilevel modeling, and the higher the value of ρ, the
less adequate a random-effects model when covariance matrices are clustered.

3ε is often close in value to the RMSEA obtained from a multi-group SEM where parameters are constrained equal
across groups.
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Notes on the Wishart methods

The Wishart approach makes clear the data generation process for MASEM and sheds
light on the nature of the pooled structured covariance matrix, Σ(θ) in the fixed-effects case
and Ω(θ) in the random-effects and dependent-samples cases. The approach assumes the pooled
structured covariance matrix underlies the observed covariance matrices. In the fixed-effects case,
only sampling error is responsible for differences between the observed covariance matrices. In the
random-effects case, adventitious error or study-specific context e.g. non-random sampling of cases
generates an intermediate population covariance matrix (true for the specific population sampled)
between Ω(θ) and the observed covariance matrix. In the dependent-samples case, clustering
creates another level of variation.

We apply Bayesian estimation to these models. Notably, the fixed-effects and random-
effects models can easily be estimated using maximum likelihood. But the dependent-samples
model requires the estimation of Ψj – a covariance matrix that varies by cluster, a problem that is
more readily amenable to Bayesian estimation.

Comparison to extant MASEM methods

We briefly compare our Wishart approach to TSSEM since it is the most popular MASEM
method, and to the one-stage method of Ke et al. (2019) as it is an alternative Bayesian approach.

TSSEM. The major difference in the construction of our Wishart approach and TSSEM is
how deviations due to different populations (or random-effects) are parameterized. In TSSEM, the
random-effect deviations of a group’s correlation vector from the true correlation vector are a zero-
mean multivariate normal vector with an unstructured covariance matrix shared across studies.
Hence, there are as many random-effect variance parameters as there are unique elements in a
correlation matrix. In our Wishart approach, the random-effect dispersion of covariance elements
between studies from the true structure is controlled by a single parameter, m, equation 7. Hence
the random-effect dispersion is of a more restrictive form, as determined by the inverse-Wishart
distribution.4 In practice, m may be permitted to vary across studies in a structured form (e.g.
Uanhoro, 2023), or in an unstructured form where each group has a unique value of m. However,
the dispersion of covariance elements is still determined by the inverse-Wishart assumption. This
restrictiveness compares less favourably to TSSEM, however, it may provide some regularization
benefits. For example, when the number of items is large, it may be quite difficult to correctly
estimate the unstructured random-effect covariance matrix in TSSEM (Cheung, 2015) necessitating
the need for simpler covariance structures e.g. a diagonal covariance matrix. Finally, the two-stage
nature of TSSEM allows the modeller to utilize the pooled correlation matrix for analysis in their
preferred SEM software – this is a very practical benefit of TSSEM.

Bayesian one-stage method of Ke et al. (2019). Ke et al. (2019)’s method assumes
that the hypothesized structure holds within each group though the structural parameters are
different across studies, e.g. as in weak or configural invariance. And each set of structural pa-
rameters (e.g. all loadings) is a multivariate normal vector; the true parameter vector (the effect
sizes of interest) and the unstructured covariance matrix underlying the structural parameters in
each study are then estimated. Conceptually, the hypothesized configuration between observed and
latent variables is realized in each study, though parameters may vary across studies. Our approach
alternatively assumes that it is the structured covariance matrix that is perturbed in each study
not model parameters, such that the hypothesized structure may not hold in certain studies. We

4As m gets larger, the random-effects deviations as implied by the inverse-Wishart distribution is increasingly
approximately a zero-mean multivariate normal vector (Wu & Browne, 2015) but with a more constrained covariance
matrix than the unstructured covariance matrix estimated by TSSEM.
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consider our assumption that the hypothesized structure may not hold in certain studies to be more
realistic (Wu & Browne, 2015), making the Wishart approach less restrictive than the method of
Ke et al. (2019).

Missing data handling

The input data for MASEM applications are correlation or covariance matrices. Missing
data are most often a problem in meta-analytic path models where the different studies may collect
different variables such that the correlation matrix is not fully available for all constituent studies.
And the biggest challenge with extending the Wishart approach to path models is identifying
credible procedures for handling the commonplace missing data challenges in path models. However,
we focus on meta-analytic latent variable models in this paper – of which CFAs are the most common
– and missing data are less likely to be a problem. However, we lay out a missing data strategy
that should be adequate when the missing data mechanism is either missing completely at random
or missing at random.

There are two general missing data scenarios in MASEM: (i) a variable may not be present
in one or more of the constituent studies; or (ii) the covariance matrix is partially reported in one
or more constituent studies (Jak & Cheung, 2018). Case ii usually occurs when only the covariance
between predictors and outcomes are reported, as opposed to the full covariance matrix of all
variables – this practice is common in regression analysis. For any given study, we only analyze
variables that are at least partially reported in the study. In case i above, only the complete
covariance matrix for each study is used to estimate the pooled structured covariance matrix. In
case ii, missing covariances can be imputed within the Bayesian model based on the posterior
predictive distribution.

Extant MASEMs result in poor performance when the missingness in covariance matrices
are missing not at random (Furlow & Beretvas, 2005), and we do not expect the Wishart methods
here to be any different. One example of missing not at random occurs when meta-analyzing long
and short form versions of instruments together. This is because short form versions of instruments
may include items chosen precisely for their stronger correlations (Widaman, Little, Preacher, &
Sawalani, 2011). A related example occurs when researchers decide to focus on specific variables
in a study because their observed correlations are large relative to other correlations which go
unreported.

Implementation details

The methods here are implemented in the bayesianmasem R package.5 The package relies
on Markov Chain Monte Carlo estimation as implemented in Stan (Carpenter et al., 2017).

Simulation study

We conducted a simulation study to evaluate the adequacy of inference using the proposed
models when applied to clustered covariance matrices. Uanhoro (2023) used simulation-based cal-
ibration (SBC, Talts, Betancourt, Simpson, Vehtari, & Gelman, 2018) to evaluate the original
presentation of the Wishart approach, but we opted for traditional Monte Carlo simulation. This
allowed us assess parameter recovery under purposely varied parameter estimates related to poten-
tial real world scenarios. However, given that Bayesian inference is better validated using SBC, we
describe the results of an SBC study in appendix B – the results suggest proper calibration for the
studied problem.

5bayesianmasem does not handle the problem of missing data.
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Data generation and design conditions

The data generation process was based on the dependent-samples model in equation 8:

Sij ∼ GBII
p

(
n∗

i

2 ,
m1
2 ,

m1
n∗

i

Ψj[i], 0p×p

)
for i ∈ {1, . . . , k}

m2Ψj ∼ W (Ω(θ), m2) for j ∈ {1, . . . , c}
Ω(θ) = ΛΦΛ′ + ∆, Λ′ = [ 0.7 0.8 0.6 0.9 0.5 0 0 0 0 0

0 0 0 0 0 0.8 0.7 0.75 0.85 0.6 ],
Φ = [ 1

.3 1 ], ∆ = diag-matrix
(
diag

(
Ip×p − ΛΦΛ′))

(9)

We varied three features within the simulation study:

1. number of clusters ranging from very small to moderate, c ∈ {5, 15, 25};

2. size of the RMSEA ranging from small to non-ignorable, ε ∈ {0.05, 0.08, 0.15}; and

3. proportion of dispersion between clusters ranging from small to large, ρ ∈ {5%, 35%, 75%}

This resulted in 27 (3 × 3 × 3) design conditions, with each condition repeated 1000 times.
The model parameters m1 and m2 were computed according to the following equations: m1 =
((1 − ρ) ∗ ε2)−1 + p − 1, m2 = (ρ ∗ ε2)−1 + p − 1. While exploring common MASEM datasets, we
found that it is common for most clusters to contain only one covariance matrix. So we set the
average number of covariance matrices per cluster to 1.4 on average. The exact cluster sizes for c
clusters were:

[
1, . . . , 1︸ ︷︷ ︸
a times

, x1, . . . , xb

]
, where b = c − a, [x1, . . . , xb] ∼ 2 + Poisson(α) (10)

When c = 5, a = 3, α = 0 with 50% probability and a = 4, α = 1 with 50% probability.
When c = 15, a = 10, α = 0.2, and when c = 25, a = 17, α = 0.25. As an example, when
c = 25 clusters, 17 clusters contained only 1 covariance matrix, and the 8 remaining clusters had an
average cluster size of 2.25, resulting in 17(1)+8(2.25) = 35 sample covariance matrices; 35/25 = 1.4
covariance matrices per cluster. Finally, the average sample size was 300, and no covariance matrix
had a sample size less than 100 cases. Precisely, the sample size, nij , for covariance matrix i in
cluster j was generated according to the following equation:

nij ∼ 100 + Poisson(qj[i]), qj ∼ Negative-binomial(µ = 200, ϕ = 20)

where ϕ is the dispersion parameter. The sample size generation is a hierarchical model such that
studies in the same cluster had more similar sample sizes.

Analytical methods

For each generated dataset, we analyzed the data with both the random-effects (equation
7) and dependent-samples (equation 8) models using the following priors:

λ ∼ N (0, σλ), ϕ2,1 + 1
2 ∼ Beta(2, 2),

√
diag(∆) ∼ t+(3, 0, 2.5),

σλ ∼ t+(3, 0, 1), ln
([

m, m1, m2
]

− p + 1
)

∼ t+(3, 0, 2.5)
(11)
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where non-zero loadings (λ) have a normal prior with scale hyperparameter, σλ. Both σλ and
residual standard deviations (

√
diag(∆)) have half-t priors (Gelman, 2006) creating a weakly reg-

ularizing effect (Lemoine, 2019) given that true the total variable variances are 1. The prior for
the interfactor correlation (ϕ2,1) is boundary-avoiding. Loadings and the interfactor correlation are
sign-corrected post-sampling (e.g. Conti, Frühwirth-Schnatter, Heckman, & Piatek, 2014; Merkle,
Fitzsimmons, Uanhoro, & Goodrich, 2021) to correct for rotational indeterminacy of latent variables
(Peeters, 2012).

We also included an ad hoc approach where we reduced all the covariance matrices in a
cluster to a single covariance matrix by assuming a fixed-effects model for all covariance matrices
in the cluster. Precisely, given h covariances in a cluster, the reduced covariance matrix was[∑h

i=1
(
n∗

i Si
)]/ [∑h

i=1 n∗
i

]
, and the sample size for this covariance matrix was 1 +

∑h
i=1 n∗

i . This
eliminates the dependence problem in the analyzed covariance matrices, reducing the number of
covariance matrices to the number of clusters. And the covariance matrices were analyzed using a
random-effects model.

We ran all models in parallel across 3 chains. For the random-effects and ad hoc models,
we dropped the first 500 iterations per chain and retained the final 500 iterations resulting in 1,500
posterior samples per parameter. For the dependent-samples models, we dropped the first 750
iterations per chain and retained the final 750 iterations resulting in 2,250 posterior samples per
parameter. We retained more samples for the dependent-samples model because the model is more
complex than the random-effects model.
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Figure 1

Relative bias of mean of posterior distribution

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates.
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Figure 2

Relative bias of standard deviation of posterior distribution

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates.
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Figure 3

Recovery of dispersion parameters for the dependent-samples model

Note. Within = ε1, Between = ε2, % between = ρ

Evaluation metrics

We were interested in the recovery of the structural parameters: loadings, interfactor cor-
relation and residual standard deviations for all models. We were also interested in the recovery of
dispersion parameters: ε for all models, and ε1, ε2 and ρ for the dependent-samples model.

For each parameter, we had three assessment metrics: bias of the mean of the posterior
distribution, bias of the standard deviation of the posterior distribution, and the empirical coverage
rate (ECR) of the 90% credible interval. We transformed bias to relative bias deeming relative bias
within ±5% as ideal and ±10% as acceptable. For coverage, we set (87.5%, 92.5%) and (85%, 95%)
as ideal and acceptable limits for the 90% ECR respectively.
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Simulation results

For the random-effects and ad hoc models, R̂ was less than 1.05 more than 99% of the time
for all parameters – parameter convergence problems were ignorable. For the dependent-samples
model, R̂ was less than 1.05 about 95% of the time for all parameters with some exceptions, suggest-
ing minor problems with parameter convergence. The exceptions were the dispersion parameters,
ε1, ε2 and ρ. Hence, in addition to reviewing results related to bias and inference of structural
parameters, we also review bias, inference and convergence of these dispersion parameters in the
dependent-samples model.

Relative bias of mean of posterior distribution of structural parameters and ε.
As shown in Figure 1, structural parameter posterior means were largely unbiased (< |10%|) for
all models with some exceptions. There was an increasing downward bias in the loadings and error
variances from the random-effects and ad hoc models at higher levels of ρ.6 This bias was especially
magnified when ε is large (0.15). Hence, the bias is a function of both ρ and ε.7 The estimate
of ε was never biased for both the random-samples and dependent-samples models. However, the
estimate of ε for the ad hoc model was downwardly biased with increased bias at lower levels of
ρ and ε. This bias is to be expected as the process of reducing all covariance matrices in a single
cluster eliminates variability. And the more variability within clusters, the greater variability is
eliminated by the ad hoc approach.

Relative bias of standard deviation of posterior distribution of structural pa-
rameters and ε. As shown in Figure 2, structural parameter posterior standard deviations were
largely unbiased (< |10%|) for the ad hoc and dependent-samples models. However, for the random-
effects model, there was an increasing downward bias in the posterior standard deviations at higher
levels of ρ. As with the bias in posterior means, the bias in posterior standard deviations was mag-
nified when ε is large (0.15). Finally, the posterior standard deviation of ε was upwardly biased
(about 20%) for the random-effects model when ε = 0.05 and c = 25.

Recovery of dispersion parameters for the dependent-samples model. The relative
bias of the posterior mean, posterior standard deviation and the proportion of times R̂ was less than
1.10 for ε1, ε2 and ρ are reported in Figure 3. Adequate convergence of these parameters was the
exception not the rule. Precisely, R̂ < 1.10 was only commonplace when c ∈ {15, 25} and ρ = 75%.
Generally, convergence for ε1 and bias about the posterior mean and standard deviation for ε1 were
often better than for the other two parameters. This matches the observation that it is easier to
accurately estimate residual or within variances in multilevel models than it is to estimate cluster-
level variances and ICCs. Interestingly, estimation problems for these specific parameters did not
distort the results for the structural parameters in the dependent-samples model (see Figures 1 and
2). Additionally, bias and inference for dispersion parameters was worst for the smallest number of
clusters (c = 5) – this parallels the finding in multilevel models that estimation is more difficult with
a small number of clusters. And convergence for dispersion parameters was worst when ε = 0.05.
To demonstrate these patterns in an example, we report the parameter traceplots for a sample run
of the dependent-samples model when c = 5, ε = 0.05, ρ = 5% – a simulation condition with
poor recovery of dispersion parameters. The traceplots are clearly inadequate for ε2 but appear
adequate for other reported parameters, see Figure 4.

Summarizing the simulation findings. The dependent-samples model may be used for
MASEM under the assumption that the covariance matrices are clustered. Assuming the approach

6The difference in relative bias for loadings and error variances occurs because variances are on the squared loading
scale. Alternatively stated, the relative bias of loadings was the same as the relative bias of error standard deviations.

7Following from the mean of an inverse-Wishart distribution, the relative bias of model-implied covariance matrix
elements in the random-effects model is:

[
(m1/(m1−p−1))

/
(m/(m−p−1))

]
− 1, m(1) = ε−2

(1) + p − 1.
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Figure 4

Parameter traceplots for a sample run of the dependent-samples model with simulated data under
unfavourable conditions for estimating dispersion parameters.

Note. Note poor convergence of ε2 (rm:rmsea_be) for a randomly generated dataset under conditions:
c = 5, ε = 0.05, ρ = 5%.

we laid out is the data generating process, parameter estimates should be unbiased and inference
about parameters should be adequate. The same cannot be said for the simpler random-effects
model applied to such data. Random-effects model parameter estimates and inference are increas-
ingly poor when there is higher variation due to clustering effects. However, the results also show
the adequacy of the random-effects model applied to non-clustered data; this follows from the ad-
equacy of the random-effects model when much of the variance was within clusters (ρ = 5%). Like
the random-effects model, the ad hoc approach produces biased estimates of the true parameters
in the data generating process. However, the parameter posterior standard deviations in the ad
hoc approach adequately convey uncertainty about the biased estimates. Parameter estimate bias
in the ad hoc approach is determined by the true value of ε and ρ (which are not estimated by
the ad hoc approach), so there is no way to bias correct estimates in practice. However, given the
adequate inference about these biased estimates, the ad hoc approach may serve as a reasonable
medium between the inadequate random-effects and the dependent-samples model. Finally, there
are many conditions when the dependent-samples model struggles to adequately estimate all its
dispersion parameters, precisely: ε1, ε2, and ρ – there is no problem with estimating ε.

Data demonstration

The data are 14 inter-factor correlation matrices of a five-factor model in Digman (1997),
previously analyzed by Cheung (2014). The first three indicators: agreeableness (A), conscientious-
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Table 1

Model comparison results sorted by LOOIC
Model LOOIC ∆LOOIC SE(∆LOOIC)

Dependent (two factors) −162.4 – –
Dependent (one factor) −144.7 17.7 7.4

Random-effects (two factors) −113.2 49.2 24.7
Random-effects (one factor) −47.6 114.8 31.3

Fixed-effects (two factors) 993.9 1156.3 363.7
Fixed-effects (one factor) 1662.3 1824.7 496.8

Ad hoc (two factors) −92.6 – –
Ad hoc (one factor) −50.4 42.2 5.5

As with other commonplace information criteria, smaller values of LOOIC suggest better predictive
performance of a model. ∆LOOIC are LOOIC differences from the best fitting model, dependent-samples
with two-factors.

ness (C) and emotional stability (ES) are hypothesized to load onto an Alpha factor; the last two
indicators: extroversion (E) and intellect (I) load onto a Beta factor. The 14 correlation matrices
were clustered within 7 authors with the following cluster sizes: 1 (4 authors); 2 (1 author); and
4 (2 authors). We fit the hypothesized model, and also fit an incorrect unidimensional model for
demonstration purposes. The same priors were retained from the simulation study.

We fit each of four Wishart methods (fixed-effects, random-effects, ad hoc, dependent-
samples) to the hypothesized two-factor and incorrect unidimensional model – eight models in all.
For each model, there were 1000 warmup iterations then 1000 iterations retained for inference
across 4 chains. Sampler-specific diagnostics (Betancourt, 2017) were adequate for all estimated
models. Across all models and parameters, the maximum R̂ (Vehtari, Gelman, Simpson, Carpenter,
& Bürkner, 2020) was 1.007 and minimum effective sample size was 794 suggesting parameter
convergence for all parameters across models.

We compared the estimated models using approximate leave-one-out information criterion
(LOOIC, Vehtari, Gelman, & Gabry, 2017) using the loo package (Vehtari, Gabry, et al., 2020) in R.
We had to compare the ad hoc models separately since the number of correlation matrices for the ad
hoc approaches (7) is different from the number of correlation matrices for other approaches (14).
Comparing the fixed-effects, random-effects and dependent-samples models, the worst models were
the fixed-effects models, while the dependent-samples models were the best performing models, see
Table 1. Within each of the four types of model, the two-factor model hypothesis always had the
lower LOOIC value, suggesting that the two-factor hypothesis was a better fit to the data than the
one-factor hypothesis.

The RMSEA can also be used for comparing several random-effects models or comparing
several dependent-samples models, see Figure 5. For the random-effects models, the two-factor
model had the lower RMSEA, suggesting that the average distance between the pooled structured
covariance matrix and the population covariance matrices underlying individual observed covariance
matrices was lower for the two-factor model compared to the unidimensional model. We can
conclude similarly based on the ad hoc models.

There are three sets of RMSEA values for the dependent-samples models. The random-
effects RMSEAs should match the dependent-samples overall RMSEAs – both sets of metrics cap-
ture the same information. The within-cluster RMSEAs (ε1) should be identical across different
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Figure 5

RMSEA estimates from Digman (1997) example

hypotheses about the same data as this is the gap between the cluster-level population covariance
matrices and the population covariance matrices underlying each observed covariance matrix. Fi-
nally, the between-cluster RMSEA (ε2) shows how the pooled structured covariance matrix differs
from the cluster-level population covariance matrices, and this will differ by hypothesized model.
Given that clustering of covariance matrices will create some shared variation, ε2 is the best mea-
sure of how well the pooled structured covariance matrix differs from the individual population
covariance matrices, as this metric reflects the RMSEA assuming there was no clustering. Based
on this metric, the pooled two-factor model is less distant than the pooled unidimensional model
from the individual population covariance matrices underlying observed covariance matrices given
the lower value of ε2 for the two-factor model. Hence, of the two hypotheses, the two-factor model
better reflects the patterns responsible for generating the observed covariance matrices. Addition-
ally, a considerable proportion of the variation is between clusters for the two-factor model, 43%,
95% CI [30%, 56%].

Finally, we report parameter estimates for all four two-factor models in Figure 6. Both
the dependent-samples and ad hoc models had the widest credible intervals, while the fixed-effects
model has the narrowest credible intervals. This pattern reflects the amount of uncertainty in the
data generation process that each model captures. Ignoring dependent-samples wrongly reduces
the uncertainty about estimated structural parameters.
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Figure 6

Structural parameter estimates from Digman (1997) example

Note. Fix. = Fixed-effects, Rand. = Random-effects, Adh. = Ad hoc, Dep. = Dependent-samples. F =∼
X: factor loading, F reflected in X; F1 ∼∼ F2: correlated factors; X ∼∼ X: error variance of X.

Discussion

In this paper, we have presented an approach to MASEM that uses hierarchical Wishart
models to capture the two most common MASEMs (fixed- and random- effects) and solves an ex-
tant problem in the MASEM literature (dependent covariance matrices). The approach has been
demonstrated with a dataset, the demonstration showed how information-criteria based model com-
parison and the RMSEA produced by the models may be used for model comparison. Additionally,
the capacity of the approach to yield adequate inference for dependent-samples has been tested via
a simulation study.

The approach here builds off previous research on hierarchical modeling of covariance matri-
ces applied to meta-analytic latent variable models (Uanhoro, 2023). Both methods are one-stage
Bayesian meta-analytic SEM approaches for latent variable models. Our unique contribution is the
ability to handle the case of dependent-samples. However, the work of Uanhoro (2023) includes two
features that are worth extending to the case of dependent-samples. First, it is possible to model the
dispersion parameter (ε) as a function of study-characteristics to create a meta-regression model. It
would be worth extending this to the dependent-samples case. In the dependent-samples case, one
could create two meta-regression models: one for the within-cluster dispersion using sample-level
characteristics as predictors; and another for between-cluster dispersion using cluster level charac-
teristics as predictors. Second, it is possible to model misspecification at the level of the pooled
covariance structure concurrently with the hypothesized structure. Misspecification modeling al-
lows for (i) capturing the degree of misspecification in the hypothesized structure; (ii) estimating
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structural parameters whose uncertainty reflects the degree of model misspecification. This exten-
sion is worth studying in the dependent-samples case, because it is reasonable to assume that there
is misspecification present at the level of the true covariance structure due to the influence of minor
factors (e.g. MacCallum & Tucker, 1991). Additionally, it allows for exploration of model fit – a
missing aspect in our current approach that we hope to address in future work.

One open question is how to identify clusters in MASEM applications. We have assumed
that clustering occurs at the level of study authors. But this assumption may be too simple
for some applications. For example, consider the case where there is clustering by both study
authors and the country where the study was conducted. The approach we have presented can
only account for one grouping factor at a time. Should the modeller then cluster at the level of
country or author in this case? In a standard multilevel context, the simplest answer would be
to account for both grouping factors. In the approach we have presented, the modeller would be
forced to choose. In theory, one could create another hierarchy in our approach but this may lead to
problems with accurately estimating dispersion parameters. For this reason, we intend to explore
additional MASEM approaches for dependent samples. One promising approach is the parameter-
based MASEM approach of Ke et al. (2019) which hierarchically models structural parameters. We
expect that such an approach may more easily accommodate truly complex data structures; we
intend to test this expectation in the future.

On correlation matrices as data for MASEM

Finally, we note that the data for meta-analytic CFAs are often correlation rather than
covariance matrices. In this paper, we laid out a data-generation process (DGP) for sample co-
variance matrices that represents a plausible mechanism for the generation of such matrices. The
Wishart approach then follows from this process. In practice, one can compute the covariance ma-
trix from the correlation matrix and item standard deviations. Moreover, item standard deviations
are often reported alongside item correlation matrices, or both sets of statistics can be retrieved
from study authors. Thus the need for the sample covariance matrix as input should not overly
limit the applicability of the recommended approach.

The challenge with proposing a coherent dependent-samples MASEM for correlation matri-
ces partially lies with the difficulty of identifying a credible hierarchical MASEM DGP that results
in correlation matrices, without inadequately reducing the data. The most commonly invoked DGP
in MASEM is that the observed correlations (ri) for study i underlying p variables are multivariate
normal: ri ∼ Np∗(ρ, Γi), where p∗ = p × (p − 1)/2 and Γi = ∆ + Φi. Φi is sampling variation
assumed to be of known form, while ∆ is variation due to random-effects and is assumed to be
a zero-matrix in the fixed-effects model. For dependent-samples MASEM, the extended DGP for
observed correlations belonging to study i in cluster j would be: rij ∼ Np∗(ρ + κj[i], Γi) and
κj ∼ Np∗(0p∗ , Θ), where Θ captures variation due to clustering.

One challenge with DGPs of this form is that the multivariate normal distribution is un-
bounded while correlations are bounded, thus non-correlations are possible under this process. A
second challenge is that even when all generated estimates are correlations, there is no guarantee
that the resulting correlation matrix will be positive-definite or valid. Moreover, these problems
are likely exacerbated in the dependent samples case. While a model assuming such a process may
be pragmatically applied to analysis of dependent correlation matrices (e.g. Wilson, Polanin, &
Lipsey, 2016), it is not a credible DGP for such data. This discrepancy between process and model
is often not a challenge for frequentist methods, which can rely on robust variance estimation given
approximately unbiased parameter estimates. However, the coherence of Bayesian inference par-
tially rests on the belief that the likelihood encodes a plausible DGP. Hence, it would be incoherent
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to propose a Bayesian model atop a likelihood known to be implausible.
Building off Archakov and Hansen (2021), Archakov, Hansen, and Luo (2022) laid out a

DGP for observed correlation matrices centered about a target correlation matrix. This approach
reduces to the Fisher r to z transformation for 2-by-2 correlation matrices. In MASEM, the target
correlation matrix would be assumed to be a structured correlation matrix. In the future, we intend
to explore a MASEM approach based on this process that would be adequate for meta-analysis
of correlation matrices. In the meantime, we conducted a simulation study where we generated
covariance matrices according to the Wishart DGP, transformed them into correlation matrices
and evaluated the performance of the proposed Wishart approach. The results suggest low bias for
structural parameters and overly conservative inference about loading parameters. These findings
are elaborated in Appendix C. In summary, the Wishart approach is better applied to covariance
matrices when available. When only correlation matrices are available, it may be better to use
the Wishart approach if the correlation matrices are dependent than to employ an approach that
ignores dependencies between observed matrices.

Declarations

Open Practices Statement. All code for simulation studies and data analysis are avail-
able at https://osf.io/yd5q4/.
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Appendix A
Additional simulation results

Figure A1

Empirical coverage rate of the 90% credible interval in the simulation study

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates. The ECR for structural parameters is sometimes
poor for ad hoc approach only because the estimates are systematically biased.
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Appendix B
Simulation-based calibration – Digman (1997) application

The data generation process (DGP) for the SBC study was based on the Digman (1997) example.
The exact DGP was:

Sij ∼ GBII
p

(
n∗

i

2 ,
m1
2 ,

m1
n∗

i

Ψj[i], 0p×p

)
for i ∈ {1, . . . , 14}

m2Ψj ∼ W (Ω(θ), m2) for j ∈ {1, . . . , 7}

Ω(θ) = ΛΦΛ′ + ∆, Φ =
[

1
ϕ2,1 1

] (B1)

Priors were chosen such that the generated data would produce valid covariance matrices
(e.g. Merkle et al., 2021; Uanhoro, 2023). Loadings and residual standard deviations had median
values of 0.8 and 0.6 respectively. And m1 and m2 priors were chosen such that the median value
of ρ would be about 0.25, exp(−6)/(exp(−5) + exp(−6)).

λ ∼N +(0.8, σλ), σλ ∼ N +(0, 0.5),
√

diag(∆) ∼ N +(0.6, 0.25),

ln([ m1
m2 ] − p + 1) ∼ N +([ 5

6 ], 0.5), ϕ2,1 + 1
2 ∼ Beta(5, 5)

(B2)

The distribution of parameters based on equation B2 is shown in Figure B1.
For the SBC study, each model was estimated using a single chain. We requested 5000

iterations, 1000 iterations were discarded for warmup, while the remaining 4000 iterations were
thinned at every second iteration to reduce autocorrelation between posterior samples. Thus, 2000
posterior samples were retained per parameter. Finally, we repeated this process 1000 times.

Evaluation of SBC results was based on graphical summaries recommended by Säilynoja,
Bürkner, and Vehtari (2022). We report the evaluations in Figures B2 and B3 – these figures were
produced using the SBC package in R (Kim, Moon, Modrák, & Säilynoja, 2023).

Our expectation is that the distribution of ranks for each parameter are uniformly dis-
tributed. When this is true, the histogram counts will often remain within the 95% simultaneous
confidence bands – this expectation is met for all parameters with very few exceptions, see Figure
B2. This suggests adequate calibration of all parameters.

The evaluation via histogram is sensitive to the number of bins. Hence, we also assessed
the empirical cumulative distribution function (ECDF) of the ranks. Precisely, we assessed the
difference of the ECDF from the theoretical CDF of a uniform variable. When these differences
are contained within the 95% simultaneous bands, parameters are adequately calibrated. This
expectation is met for all parameters, Figure B3.

We also repeated the testing-based SBC evaluation procedures in Uanhoro (2023). The
SBC ranks are first transformed to rankits: qi = (ri + 0.5)(L + 1)−1, where ri are the ranks and
L = 2000, the number of retained posterior samples. The standard normal quantile function was
applied to the rankits. If the ranks were approximately uniform, then the result should be an
approximately standard normal variable. The bias of the mean (difference from 0 based on the
one-sample t999 test), bias of the variance (difference from 1 based on the one-sample χ2

999 test),
and a χ2

1000 test of standard normality (Cook, Gelman, & Rubin, 2006) were then used to assess the
standard normality expectation.8 As shown in Figure B4, no parameter resulted in a statistically
significant test suggesting calibration for all parameters.

8The degrees of freedom are based on the number replications, 1000.
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Figure B1

Draws from prior distributions

Appendix C
Simulation study of dependent correlation matrices

As mentioned in the Discussion section, we repeated the simulation study in the paper, but trans-
formed the sample covariance matrices to correlation matrices prior to data analysis. Following from
the expectation of an inverse-Wishart distribution, our model when applied to these data should
return the following structured covariance matrix: Ω(θ)(m1 − p − 1)m−1

1 , where m1 = ε−2
1 + p − 1

and ε1 = ε
√

(1 − ρ). Hence, the bias and empirical coverage rate evaluations are adjusted to reflect
this. We excluded conditions where ρ = .75 and ε = 0.05 as analysis runtimes for the three con-
ditions (c ∈ {5, 15, 25}) were overly time consuming. Finally, we only ran 300 replications, down
from 1000 replications in the original study.

Results are reported in Figures C1, C2 and C3. Most parameters had acceptable levels of
bias (< |10%|), apart from ε which was sometimes downwardly biased (especially when ε = 0.05).
We believe this downward bias occurs because the process of converting a covariance matrix to
a correlation matrix eliminates important variation, given the data generation process. Posterior
standard deviations were often upwardly biased, especially for loading parameters. This suggests
overly conservative inference, and resulted in higher than nominal coverage rates especially for
loading parameters. Coverage for ε was always low given the downward parameter bias. And
there were also periods of under-coverage for loading parameters at the combination of high values
of ε and larger number of clusters. This under-coverage likely occurs even in the presence of
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Figure B2

Histogram of SBC ranks – Digman (1997) application

Note. m_ln_int_wi = m1 and m_ln_int_be = m2; phi = interfactor correlation; res_var = residual
variances. Expectation is that the histogram counts are contained in the 95% simultaneous confidence
bands.

overly wide posterior standard deviations because of the combination of some parameter bias and
increased precision of posterior standard deviations at larger sample size. Finally, as with the
original simulation study, there were problems estimating the dispersion parameters, see Figure
C4.
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Figure B3

Empirical CDF check – Digman (1997) application

Note. m_ln_int_wi = m1 and m_ln_int_be = m2; phi = interfactor correlation; res_var = residual
variances. Expectation is that the sample ECDF is contained within the 95% simultaneous confidence bands
about the theoretical CDF.

Figure B4

Additional SBC evaluation metrics – Digman (1997) application

Note. m_ln_int_wi = m1 and m_ln_int_be = m2; phi = interfactor correlation; res_var = residual
variances. Number in parenthesis on y-axis is count of parameters. Vertical dashed lines are 95% confidence
limits based on hypothesis tests; no estimate exceeded the limits suggesting adequate calibration for all
parameters.



D
EPEN

D
EN

T
M

A
SEM

26

Figure C1

Relative bias of mean of posterior distribution for correlation simulation study

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates.
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Figure C2

Relative bias of standard deviation of posterior distribution for correlation simulation study

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates.
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Figure C3

Empirical coverage rate of the 90% credible interval for correlation simulation study

Note. load. = 10 loading estimates, r = inter-factor correlation, ev. = 10 error variance estimates.
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Figure C4

Recovery of dispersion parameters for correlation simulation study

Note. Within = ε1, Between = ε2, % between = ρ
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