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Background Information

• Collocation is a system of words that tend to be found
together, e.g. “make the bed”, “do homework”, . . . .

• Higher collocation use comes with greater language
acquisition.

Design

• Oral interviews with 20 intermediate level speakers (L2),
20 advanced level speakers (L2) and 20 native speakers of
Spanish.

• Interview duration was consistent across speakers.

• Interview text was coded for seven types of collocations.

Statistical question

Did the three groups differ in their collocation use across the
seven different collocations?
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Table: Sample data

Person Group C1 C2 C3 C4 C5 C6 C7

i1 Intermediate 11 3 5 3 0 0 1
a1 Advanced 19 0 9 2 0 0 0
n1 Native 48 26 21 8 8 0 0

Number of times individual used collocation of a given type
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Interest: Prevalence of different
collocation types by group
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Prevalence of collocation types (count of each collocation / total collocations) for each speaker.
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Hierarchical multinomial

Rationale
• Multinomial has Poisson marginals (Townes, 2020)

• Hierarchical approach to regularize group coefficient
estimation (Gelman et al., 2013)

Basic model:

lpgc = βc + δgc , pgc =
exp

(
lpgc

)∑7
c=1 exp

(
lpgc

)
usei ∼ Multinomial(pg1, pg2, . . . , pg7)

usei = count vector for individual i , βc = collocation effect
(7-levels), δgc = collocation By group interaction (21-levels)

Hierarchical priors:

βc ∼ N (0, sβ), sβ ∼ t+(3, 0, 1)

δgc ∼ N (0, sδ), sδ ∼ t+(3, 0, 1)
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Hierarchical Dirichlet-multinomial

Rationale
• Multinomial fails to account for overdispersion

• Dirichlet-multinomial (negative binomial marginals,
Townes, 2020) does

Model:

lpgc = βc + δgc , pgc =
exp

(
lpgc

)∑7
c=1 exp

(
lpgc

)
usei ∼ DirichletMultinomial([pg1, pg2, . . . , pg7]× κg )

κg ∼ Gamma(1, 0.1)

κg = overdispersion parameter permitted to vary by group

Retained same hierarchical priors from multinomial model.
Dirichlet-multinomial (marginal likelihood) coded in Stan.
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Hierarchical multinomial-t
compound

Rationale
• Poisson-normal compound to handle overdispersion (e.g.

Hinde, 1982)

• Replace normal with t to handle outliers

Model:

lpic = βc + δgc + γic , pic =
exp (lpic)∑7
c=1 exp (lpic)

usei ∼ Multinomial(pi1, pi2, . . . , pi7)

γic ∼ t(ν, 0, sc), ν ∼ Gamma(1, 0.1), sc ∼ t+(3, 0, 1)

(1)

Retained same hierarchical priors from multinomial model.
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Results
Sampler: Stan (Carpenter et al., 2017), models passed both
sampler-agnostic (Vehtari, Gelman, Simpson, Carpenter, &
Bürkner, 2020) and sampler-specific (Betancourt, 2018)
diagnostics. 1,000 post-warmup iterations across 12 chains.
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x−axis is square−root transformed

Estimated prevalence of collocation types by model. MN = multinomial, D-MN = Dirichlet-multinomial,
MN-T = multinomial-t compound.

High-level model insights are about the same. Multinomial-t
model has more parameters to learn from.
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Degrees of freedom and scale parameters from multinomial-t model.

Notes
• Much of the variance is between items (collocation types),

interaction accounts for less

• Residual variation differs markedly across collocation types

• Degrees of freedom is highly uncertain
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Ranking the average preference for
collocations
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Comparing L2 speakers to native
speakers
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In closing

Ongoing work with the generalized Dirichlet-multinomial

• Dirichlet-multinomial imposes restrictions on the
correlation between the prevalences

• Generalized Dirichlet-multinomial eases these restrictions
while doubling the number of parameters - “How would
hierarchical estimation proceed?”
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