> Uanhoro, Echeverria

Context for Presentation Methods Results

In closing

References

Multivariate count data analysis using Bayesian hierarchical multinomial-t compound regression: A demonstration With collocations Bayesian Hierarchical Multinomial-t Compound

James Uanhoro<sup>1</sup> Silvia Aguinaga Echeverria<sup>2</sup>

<sup>1</sup>Ohio State University

<sup>2</sup>University of Navarra

uanhoro.1@osu.edu

April 13, 2021

### Outline

Multivariate count data analysis using Bayesian hierarchical multinomial-t compound regression: A demonstration With collocations

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing References

#### 1 Context for Presentation

2 Methods

3 Results



▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

> Uanhoro, Echeverria

Context for Presentation Methods Results

References

## Context for Presentation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> Uanhoro, Echeverria

Context for Presentation Methods Results

In closing

References

#### Background Information

• Collocation is a system of words that tend to be found together, e.g. "make the bed", "do homework", ....

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Higher collocation use comes with greater language acquisition.

> Uanhoro, Echeverria

Context for Presentation Methods Results

In closing

References

#### Background Information

- Collocation is a system of words that tend to be found together, e.g. "make the bed", "do homework", ....
- Higher collocation use comes with greater language acquisition.

#### Design

- Oral interviews with 20 intermediate level speakers (L2), 20 advanced level speakers (L2) and 20 native speakers of Spanish.
- Interview duration was consistent across speakers.
- Interview text was coded for seven types of collocations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing

#### Background Information

- Collocation is a system of words that tend to be found together, e.g. "make the bed", "do homework", ....
- Higher collocation use comes with greater language acquisition.

#### Design

- Oral interviews with 20 intermediate level speakers (L2), 20 advanced level speakers (L2) and 20 native speakers of Spanish.
- Interview duration was consistent across speakers.
- Interview text was coded for seven types of collocations.

#### Statistical question

Did the three groups differ in their collocation use across the seven different collocations?

### Table: Sample data

Person Group C1 C2 C3 C4 C5 C6 C7 i1 Intermediate 11 3 5 3 0 0 1 2 a1 Advanced 19 0 9 0 0 0 n1 Native 48 26 21 8 8 0 0 Number of times individual used collocation of a given type

(ロ) (同) (三) (三) (三) (○)

Multivariate count data analysis using Bayesian hierarchical multinomial-t compound regression: A demonstration With collocations

> Uanhoro, Echeverria

Context for Presentation Methods Results

References

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing

# Interest: Prevalence of different collocation types by group



Prevalence of collocation types (count of each collocation / total collocations) for each speaker.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

> Uanhoro, Echeverria

Context for Presentation

Methods

Results

References

## Methods

(日)

> Uanhoro, Echeverria

Context for Presentation

#### Methods

Results

III Closing

References

## Hierarchical multinomial

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Rationale

- Multinomial has Poisson marginals (Townes, 2020)
- Hierarchical approach to regularize group coefficient estimation (Gelman et al., 2013)

> Uanhoro, Echeverria

Context for Presentation

Methods Results

In closing

References

## Hierarchical multinomial

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Rationale

- Multinomial has Poisson marginals (Townes, 2020)
- Hierarchical approach to regularize group coefficient estimation (Gelman et al., 2013)

Basic model:

$$lp_{gc} = \beta_c + \delta_{gc}, \quad p_{gc} = \frac{\exp(lp_{gc})}{\sum_{c=1}^{7} \exp(lp_{gc})}$$
$$use_i \sim \text{Multinomial}(p_{g1}, p_{g2}, \dots, p_{g7})$$

 $use_i = \text{count vector for individual } i, \beta_c = \text{collocation effect}$ (7-levels),  $\delta_{gc} = \text{collocation By group interaction (21-levels)}$ 

> Uanhoro, Echeverria

Context for Presentation

Methods Results In closing

#### Rationale

• Multinomial has Poisson marginals (Townes, 2020)

Hierarchical multinomial

• Hierarchical approach to regularize group coefficient estimation (Gelman et al., 2013)

Basic model:

$$lp_{gc} = \beta_c + \delta_{gc}, \quad p_{gc} = \frac{\exp(lp_{gc})}{\sum_{c=1}^{7} \exp(lp_{gc})}$$
$$use_i \sim \text{Multinomial}(p_{g1}, p_{g2}, \dots, p_{g7})$$

 $use_i = \text{count vector for individual } i, \beta_c = \text{collocation effect}$ (7-levels),  $\delta_{gc} = \text{collocation By group interaction (21-levels)}$ 

Hierarchical priors:

$$egin{aligned} eta_{c} &\sim \mathcal{N}(0, s_{eta}), \quad s_{eta} &\sim t^+(3, 0, 1) \ \delta_{gc} &\sim \mathcal{N}(0, s_{\delta}), \quad s_{\delta} &\sim t^+(3, 0, 1) \ \end{array}$$

> Uanhoro, Echeverria

Context for Presentation

#### Methods

Results

In closing

References

## Hierarchical Dirichlet-multinomial

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Rationale

- Multinomial fails to account for overdispersion
- Dirichlet-multinomial (negative binomial marginals, Townes, 2020) does

> Uanhoro, Echeverria

Context for Presentation

Methods

In closin

References

## Hierarchical Dirichlet-multinomial

#### Rationale

- Multinomial fails to account for overdispersion
- Dirichlet-multinomial (negative binomial marginals, Townes, 2020) does

Model:

$$lp_{gc} = \beta_c + \delta_{gc}, \quad p_{gc} = \frac{\exp(lp_{gc})}{\sum_{c=1}^{7} \exp(lp_{gc})}$$
  
use<sub>i</sub> ~ DirichletMultinomial([p\_{g1}, p\_{g2}, ..., p\_{g7}] × \kappa\_g)  
\kappa\_g ~ Gamma(1, 0.1)

 $\kappa_{\rm g}={\rm overdispersion}$  parameter permitted to vary by group

Retained same hierarchical priors from multinomial model. Dirichlet-multinomial (marginal likelihood) coded in Stan.

#### Uanhoro, Echeverria

Context for Presentation

#### Methods

Results In closin

References

# Hierarchical multinomial-t compound

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Rationale

- Poisson-normal compound to handle overdispersion (e.g. Hinde, 1982)
- Replace normal with t to handle outliers

> Uanhoro, Echeverria

Context for Presentation

Methods Results In closing Reference

# Hierarchical multinomial-t compound

#### Rationale

- Poisson-normal compound to handle overdispersion (e.g. Hinde, 1982)
- Replace normal with t to handle outliers

#### Model:

$$lp_{ic} = \beta_c + \delta_{gc} + \gamma_{ic}, \quad p_{ic} = \frac{\exp(lp_{ic})}{\sum_{c=1}^{7} \exp(lp_{ic})}$$
  

$$use_i \sim \text{Multinomial}(p_{i1}, p_{i2}, \dots, p_{i7})$$
  

$$\gamma_{ic} \sim t(\nu, 0, s_c), \quad \nu \sim \text{Gamma}(1, 0.1), \quad s_c \sim t^+(3, 0, 1)$$
(1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Retained same hierarchical priors from multinomial model.

> Uanhoro, Echeverria

Context for Presentation

Methods

Results

In closing

## Results

Sampler: Stan (Carpenter et al., 2017), models passed both sampler-agnostic (Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2020) and sampler-specific (Betancourt, 2018) diagnostics. 1,000 post-warmup iterations across 12 chains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



Estimated prevalence of collocation types by model.  $\mathsf{MN}=\mathsf{multinomial},\ \mathsf{D-MN}=\mathsf{Dirichlet-multinomial},\ \mathsf{MN-T}=\mathsf{multinomial-t}\ \mathsf{compound}.$ 

High-level model insights are about the same. Multinomial-t model has more parameters to learn from.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Uanhoro, Echeverria

Context for Presentation

Methods

Results

In closing

References



・ロト ・ 同ト ・ ヨト ・ ヨト

3

Degrees of freedom and scale parameters from multinomial-t model.

> Uanhoro, Echeverria

Context for Presentation

Results

In closing

References



Degrees of freedom and scale parameters from multinomial-t model.

#### Notes

- Much of the variance is between items (collocation types), interaction accounts for less
- Residual variation differs markedly across collocation types

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ъ

Degrees of freedom is highly uncertain

> Uanhoro, Echeverria

T

Context for Presentation

Results

In closing

References

# Ranking the average preference for collocations

| 7 -          | 99.3% |       | 0.7%      |                         |       |       |       |
|--------------|-------|-------|-----------|-------------------------|-------|-------|-------|
| est)         | 0.7%  | 0.9%  | 92.1%     | 6.3%                    |       |       |       |
| high o       |       | 12.6% | 6.6%      | 80.8%                   | 0.0%  |       | 0.0%  |
| vest to      |       | 86.0% | 0.6%      | 12.9%                   | 0.1%  |       | 0.5%  |
| y<br>10<br>3 |       | 0.5%  | 0.0%      | 0.1%                    | 38.8% | 0.0%  | 60.6% |
| Rar<br>Rar   |       | 0.0%  |           |                         | 61.0% | 0.2%  | 38.8% |
| 1 -          |       |       |           |                         | 0.1%  | 99.8% | 0.1%  |
| l            | N–V   | V–N   | N–Aj<br>C | N-P-N<br>ollocation typ | V-Av  | Av–Aj | V–Aj  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

> Uanhoro, Echeverria

Context for Presentation Methods Results

In closing

References

### Collocation use rate by group



Shaded bar and line are 90% & 95% quantile intervals respectively

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

> Uanhoro, Echeverria

Context for Presentation

Methods

Results

In closing

References

# Comparing L2 speakers to native speakers



Percentage change from Native speakers with 95% CI

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing

## In closing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### In closing

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Bayesian hierarchical multinomial-t compound regression: A demonstration With collocations

Multivariate

analysis using

Uanhoro, Echeverria

Context for Presentation Methods

Results

In closing

References

#### Ongoing work with the generalized Dirichlet-multinomial

- Dirichlet-multinomial imposes restrictions on the correlation between the prevalences
- Generalized Dirichlet-multinomial eases these restrictions while doubling the number of parameters - "How would hierarchical estimation proceed?"

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). doi: 10.18637/jss.v076.i01 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis (No. 4). Chapman and Hall/CRC. Hinde, J. (1982). Compound Poisson regression models. In R. Gilchrist (Ed.), GLIM 82: Proceedings of the International Conference on Generalised Linear Models (pp. 109–121). New York, NY: Springer New York. Townes, F. W. (2020). Review of probability distributions for modeling count data. Retrieved from https://arxiv.org/abs/2001.04343 Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2020, Jul). Rank-normalization, folding,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Uanhoro, Echeverria

Context for Presentation Methods Results In closing References and localization: An improved  $\widehat{R}$  for assessing convergence of MCMC. Bayesian Analysis. Retrieved from http://dx.doi.org/10.1214/20-BA1221 doi: 10.1214/20-ba1221

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @