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A comparison of different prior choices for estimating the influence of minor

factors in Bayesian structural equation models
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Abstract

Bayesian structural equation models may be estimated under the assumption that minor

factors influence the population covariance matrix responsible for available data. This

implies that a correct hypothesized model will have less than perfect fit to data. The

influence of minor factors may be captured by regularized estimation of a full matrix of

residual covariances. Extant literature has explored a normal prior for residual covariances,

which returns an index of model fit. In this paper, we compare other shrinkage priors for

estimating the influence of minor factors. We find that the generalized double-Pareto, a

global-local prior, has optimal performance for estimating the influence of minor factors,

but performs poorly for estimating the model fit index.

Keywords: model misspecification, Bayesian SEM, minor factors, CRMR,

regularization, ridge, lasso, global-local
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A comparison of different prior choices for estimating the influence of minor

factors in Bayesian structural equation models

Model misspecification in Bayesian structural equation modeling (BSEM) is an

active area of research. Levy (2011) introduced posterior predictive p-values computed

using a likelihood ratio discrepancy measure to assess the presence of model

misspecification. As with frequentist SEMs, PPP values can detect trivial misspecification

especially for large samples, necessitating assessments of the degree or size of model

misspecification. Accordingly, Levy (2011) also proposed a Bayesian standardized root

mean squared residual (SRMR) based on the distribution of realized values of the gap

between the model-implied covariance matrix and the sample covariance matrix. Hoofs,

van de Schoot, Jansen, and Kant (2018) evaluated the deviance information criteria for

model comparisons, and proposed a Bayesian root mean square error of approximation

(RMSEA). Garnier-Villarreal and Jorgensen (2020) adapted extant frequentist fit indices

(RMSEA, CFI, TLI, . . . ) to the Bayesian context. These approaches are all similar to

frequentist SEMs. Model parameters are estimated under the assumption that the

model-implied covariance matrix is the population covariance matrix, and the size of

misspecification is determined afterwards.

Differently from these approaches, Uanhoro (2023b) estimated Bayesian SEMs while

simultaneously modeling a fit index akin to the correlation root mean square residual

(CRMR). In their approach, model parameters were estimated under the assumption that

the model-implied covariance matrix is not the population covariance matrix.

Consequently, uncertainty about model parameters reflects the degree of model

misspecification. This approach is similar to the frequentist approach of Wu and Browne

(2015) which estimated the RMSEA simultaneously with model parameters.

The conceptual rationale for assuming the model-implied covariance matrix is not

the population covariance matrix underlying the available data is that minor factors which

cannot be predicted a-priori influence the population covariance matrix (MacCallum &
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Tucker, 1991). Uanhoro (2023b) operationalized minor factor influences by assuming the

effect of minor factors (or residual covariances) are normally distributed with mean zero

and a scale parameter that is learned from the data. The scale parameter when

standardized is the root mean square error of standardized residual covariances, and can

serve as an index of model fit.

The approach of Uanhoro (2023b) may be viewed as a Bayesian SEM that permits

estimation of all residual covariances via ridge regularization. Under this framing, other

regularization methods are immediately obvious, e.g. a lasso penalty (e.g. Chen, 2021).

From a Bayesian perspective, different regularization methods relate to different prior

choices for estimating residual covariances.

In this paper, we compare the effect of different prior choices for minor factor

influences (or residual covariances) on model estimation. In the next section, we present

different priors as well as their expected substantive implications for model estimation.

Afterwards, we compare these priors using a simulation study.

A review of prior options

We briefly review the method in Uanhoro (2023b) using the example of confirmatory

factor analysis. Assume the population covariance matrix (Σ) underlying p indicators is:

Σ = ΛΦΛT + Ψ + ∆ (1)

where Λ is the loading matrix, Φ is the inter-factor correlation matrix, ∆ is the usual

residual covariance matrix (often diagonal), and Ψ is a full residual covariance matrix

reflecting minor factor influences. Let ψij (i < j ≤ p) be elements of the strict lower

triangular part of Ψ, then ψij√
σjjσii

∼ N (0, τ), where τ is the root mean square error

(RMSE) of standardized residual covariances (SRCs) that is learned from the data, and is

akin to the CRMR.

This is a ridge-type prior, and implicitly assumes that minor factor influences are on



DIFFERENT MINOR FACTOR PRIORS 5

average zero, and deviate from 0 in a continuous manner. If one assumes that each residual

covariance reflects a very large number of minor factors, each influencing the residual

covariance in a tiny way, then the normality assumption follows from central limit theorem.

Logistic prior. A similar prior to the normal prior is the logistic prior, i.e.
ψij√
σjjσii

∼ Logistic(0, τ ′), where τ = τ ′ π√
3

is the RMSE of SRCs. The logistic prior is

largely similar to the normal prior, but the logistic distribution is more heavy-tailed and

consequently more accommodating of outliers. Practically, the logistic prior maintains the

realistic assumptions of the normal prior without overly shrinking large SRCs.

Lasso prior. Alternatively, a lasso prior could be assumed for the SRCs (e.g. Chen,

2021), i.e. ψij√
σjjσii

∼ Laplace(0, τ ′), where τ = τ ′√2 is the RMSE of SRCs. A lasso prior

follows from the assumption that SRCs are largely zero with a few large non-zero SRCs.

This assumption is unrealistic because it is unlikely that any minor factor influences are

exactly 0 for real data. However, this assumption may be practically useful when one

believes a model is largely correct with a few notable residual covariances. Hence, the lasso

prior is useful for identifying large SRCs.

Generalized double-Pareto prior. A feature of previously examined priors is

that shrinkage is controlled by a global parameter – transformations of τ – leaving all

SRCs subject to shrinkage towards zero. Ideally, we prefer a prior that strongly shrinks

small SRCs, and has almost no impact on large SRCs. This would be ideal for identifying

large SRCs. Practically, identification of large SRCs is important as they challenge the

assumption that model misspecification is entirely due to “minor factors”. A solution is to

employ so-called global-local priors, that additionally estimate a unique (local) shrinkage

parameter for each SRC. However, estimating a shrinkage parameter per SRC would

increase model complexity, especially for models with a large number of indicators. The

generalized double-Pareto prior (GDP; Armagan, Dunson, & Lee, 2013) is a global-local

prior that can be parameterized using a single shrinkage parameter. The GDP distribution

has Laplace-like spike at 0 (i.e. shrinkage to 0 for small SRCs) and Student-t tail behaviour
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(i.e. heavy-tailed and accommodating of outliers). Hence, we may also assume SRCs have

a GDP prior (mean-shape-scale notation): ψij√
σjjσii

∼ GDP(0, α, τ ′), where

τ = τ ′ α
√

2
(α− 1)(α− 2) is the RMSE of SRCs (α > 2).

In summary, the different priors have different implications, both normal and

logistic priors assume continuous deviations of SRCs from zero, with the logistic prior

being more accommodating of outlying SRCs. The lasso and GDP priors assume most

SRCs are zero with limited exceptions, thus allowing for the identification of large SRCs,

with the GDP prior allowing larger SRCs to escape shrinkage. The differences between the

priors are captured in Figure 1. Based on the figure, the GDP prior can have comparable

shrinkage to the lasso prior for small SRCs, while barely shrinking large SRCs.

Simulation study

We compared the different priors on their ability to identify unduly large residual

covariances when the influence of minor factors is trivial. This study uses the design of

simulation study 3 in Uanhoro (2023b) while comparing different prior choices. The data

generation process (DGP) was:

S ∼ Wp

(
n− 1, 1

n− 1Σ
)
, Σ = ΛΦΛT + Ω, where Ω = Ψ + ∆

ΛT = [ 0.7 0.8 0.6 0.9 0.5 0 0 0 0 0
0 0 0 0 0 0.8 0.7 0.75 0.85 0.6 ], Φ = [ 1

.3 1 ]

diag(Ω) = diag(Ip×p − ΛΦΛ), δij√
ωiiωjj

= [0.3,−0.3],

(Ψ + ∆∗) = DRD, R ∼ LKJ(η)

n ∈ {100, 300, 1000, 5000}

(2)

Within each iteration, we randomly picked two pairs of residual covariances in ∆,

δij in the DGP, where each member of the pair belonged to a different factor. One residual

correlation was set to .3, the other was set to −.3. The absolute values of residual

covariances in ∆ range from 0.069 (when i, j = 4, 9) to 0.21 (when i, j = 5, 10). We chose a
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value of η corresponding to τ = 0.025 such that residual covariances due to minor factors

mostly lie in the ±0.05 interval, hence both pairs of residual covariances specified in ∆

should be larger than the elements in Ψ.1

We simulated 500 datasets per condition. Bayesian models were fit with Stan

(Carpenter et al., 2017) via the minorbsem package (Uanhoro, 2023a) using default priors.

500 iterations were retained across 3 chains for inference. All scripts are available at

https://osf.io/xswy6/?view_only=4435656baf7740729054215f5bda64ba.

Models

We estimated two model types:

1. A complex model: that assumed the correct factor configuration, and pre-specified

the two randomly selected residual covariances in ∆.

2. A simple model: that also assumed the correct factor configuration, but did not

pre-specify the two randomly selected residual covariances in ∆.

The simple model is missing two parameters, while the complex model is correct.

However, since the simple model estimates Ψ, both parameters should stand out in Ψ. For

both model types, we estimate four models by varying the residual covariance priors:

normal, logistic, lasso, GDP.

Research questions

How do the four priors compare on:

1. the size of all SRCs excluding both randomly selected pairs in the simple model,

hereafter null SRCs. Since null SRCs are largely small (±0.05), the best model would

have the smallest null SRCs on average.

1 The residual covariances in ∆ are on the same scale as the residual covariances in Ψ, since the
population covariance matrix is standardized.

https://osf.io/xswy6/?view_only=4435656baf7740729054215f5bda64ba
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2. the size of both randomly selected pairs of SRCs in the simple model, hereafter

non-null SRCs. Since these SRCs represent missing residual covariances in the DGP

(δij), the best model would have the largest values for both SRCs.

3. the ability of the simple model to correctly identify the non-null SRCs as the largest

SRCs. The best model would have the highest classification rate.

4. the ability of the simple and complex models to correctly estimate the structural

parameters, and the ability of the complex model to estimate both randomly selected

residual covariances, δij. This is assessed using relative bias, coverage of 90% credible

intervals and relative estimation efficiency. The best model would have acceptable

bias, coverage and the highest estimation efficiency.

Simulation results

RQ 1. As shown in Figure 2 (left panel), the null SRCs were centered around zero

for all priors. Compared to the normal prior, the mean absolute values of the null SRCs

were 0.056 (t44 = 38, p < .001), 0.10 (t44 = 27, p < .001) and 0.16 (t44 = 28, p < .001)

standard deviations lower for logistic, lasso and GDP priors respectively.2 This matches the

pattern of dispersion in Figure 2.

RQ 2. As shown in Figure 2 (right panel), the non-null SRCs were larger when the

sample size was larger. Compared to the normal prior, the mean value of the non-null

SRCs (with positive and negative SRCs sign-aligned) were 0.13 (t24 = 8.4, p < .001), 0.22

(t24 = 9.8, p < .001) and 0.32 (t24 = 9.5, p < .001) standard deviations higher for logistic,

lasso and GDP priors respectively. This matches the pattern in Figure 2.

RQ 3. There was no statistically significant difference in the ability of the different

priors to correctly identify the two largest SRCs, χ2
3 = 0.015, p > .99;3 matching the

2 Estimates were adjusted for sample size, cluster-robust standard errors were applied with clustering by
residual covariance pair. Standard deviation was the raw unadjusted sample SD, yielding a conservative
effect size. The same approach was retained for analysis of non-null SRCs.
3 The analysis was based on a beta-binomial model of the number of times a model correctly identified
both non-null SRCs, with adjustment for sample size which was a statistically significant factor,
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pattern in Figure 3.

RQ 4. As shown in Figure 4, parameter recovery was largely adequate for

structural parameters based on relative bias and coverage across different priors and for

both the simple and complex models. The simple model sometimes had higher than

nominal coverage for structural parameters, i.e. inference was sometimes conservative when

there were missing residual covariances. Estimation of τ under the GDP prior was often

upwardly biased and often very inefficient. Finally, estimation of τ under the normal prior

was inefficient for the simple model.

Summary of simulation results

The GDP prior shrunk small minor factor influences the most, and shrunk large

outlying SRCs the least, making it the most desirable prior for identification of overly large

SRCs. However, the GDP prior often poorly estimated τ , making the GDP-based approach

the worst option for estimating the model fit index. In this regard, the logistic approach

was always adequate for estimating τ . Finally, estimation of structural parameters was

often adequate across approaches, with different methods comparable in terms of bias,

coverage and efficiency.

Conclusion

In this paper, we compared different prior choices for capturing the influence of

minor factors on the population covariance matrix underlying available data. The GDP

prior is a good choice for estimation of structural parameters as well as for estimation of

the minor factor influences. Large SRCs are very weakly regularized while small SRCs are

more strongly regularized. This can lead to greater distinction between trivial and

non-trivial residual covariances, potentially permitting better diagnosis of model

misspecification. However for determining the size of model misspecification, we

recommend the use of the logistic model.

χ2
3 = 23, p < .001.
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Figure 1
Density of different priors with mean 0 and standard deviation 1.

Note. The GDP shape parameter is in parenthesis. The normal and logistic priors are bell-shaped,
while the lasso and GDP priors are spiked at 0. Larger peaks suggest increased shrinkage of small
SRCs, with spikes suggesting shrinkage to 0. Larger tail density suggests less shrinkage for large
SRCs.
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Figure 2
Distribution of standardized residual covariances from simple model.

Note. The left panel shows the distribution of residuals for all SRCs except both pairs of randomly
selected residual covariances, the null SRCs. The right panel shows the distribution for the positive
pair of randomly selected residual covariances – the distribution for the negative residual is the
negative of the positive residual distribution.
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Figure 3
Detecting large SRCs in simple model.

Note. What percentage of the time does the simple model identify the two largest SRCs as the
non-null SRCs?
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Figure 4
Parameter estimation and recovery.

Note. lo = loading, fc = factor correlation, ev = error variance, ec = error correlation, rm =
τ . ±10% relative bias, 90% coverage in (85%, 95%), and relative RMSE (compared to minimum
RMSE) < 105% are deemed acceptable. Estimates that pass these criteria are faded. Certain
relative RMSE values are missing as they were very high (> 1.5). The population parameter for τ
under the simple model was upwardly adjusted to account for both δij parameters.
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