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Abstract

Certain methodologists have recommended the probability of superiority (PS) as an effect

size for two-group comparisons, because the PS is relatively easy to understand. In this

paper, we develop a Bayesian estimation approach for the PS, and provide prior

specifications for model parameters. Our approach exploits both the relationship between

the PS and the Mann Whitney U -statistic, and the connection between parametric and

nonparametric statistic. Using a simulation study, we show the approach to be efficient

relative to other estimation approaches for a sample size that is small but common in

educational interventions. Hence, it is our hope that the method we present helps applied

researchers better communicate group differences when comparing two independent samples.

Keywords: effect size, probability of superiority, Bayesian estimation, independent

samples t-test, rankit
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Bayesian inference for the Probability of Superiority

The independent-samples t-test is a well-established statistical procedure for the

comparison of two groups. Kruschke (2013) demonstrated that utilizing Bayesian parameter

estimation for this simple procedure yields a wealth of information that the frequentist

approach fails to provide. Kruschke (2013) also demonstrated how to compute Cohen’s d, a

very standard effect size for two-sample scenario. The probability of superiority (PS) is an

alternative effect size that is relatively easy for nonstatisticians to interpret (Brooks, Dalal,

& Nolan, 2014; McGraw & Wong, 1992). In the remainder of this paper, we review

commonplace estimation methods for the PS. Next, we show how the relation of the PS to

the Mann Whitney U -statistic provides an alternative approach for estimating the PS. This

allows us to develop a Bayesian model for the PS, and we provide prior choice

recommendations. Finally, we use a simulation study to compare the Bayesian approach

with prevailing estimation methods when the sample size is small.

Estimation of the probability of superiority

The PS is the probability that a randomly selected score from one group exceeds a

randomly selected score from another group (McGraw & Wong, 1992). McGraw and Wong

(1992) called the PS the common language effect size because they expected that

nonstatisticians will easily understand the PS, and there is some empirical evidence to

support this view (Brooks et al., 2014). We recommend the McGraw and Wong (1992) and

Brooks et al. (2014) papers for readers who wish to learn more about the PS from a

conceptual perspective. Assuming the data are normally distributed,

PS = Φ(µ2− µ1 | 0,
√
σ2

2 + σ2
1), where Φ(·) is the normal cumulative distribution function, µj

and σj for j = {1, 2} represent group means and standard deviations respectively (McGraw

& Wong, 1992). If the data are normal and the group mean difference is zero, the PS will be

50%, meaning that half the time, values from one group exceed the other and vice-versa.
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Vargha and Delaney (2000) gave an alternative formulation that does not make

distributional assumptions of the data:

P̂S = [#(y2 > y1) + 0.5×#(y2 = y1)]/(n1n2) (1)

where #(·) is the count function and n1 and n2 are the sample sizes of groups 1 and 2

respectively. In equation 1, we compare each data point in a group with all the data points

in the other group using the ordinal information in the data. For inference, results from

Ruscio and Mullen (2012) suggest that the bias-corrected and accelerated (BCa) bootstrap

performs adequately under a wide variety of data conditions.

Relation to Mann Whitney U -statistic and estimation. The Mann-Whitney

U -test is a common nonparametric analog to the t-test. The U -test tests whether values from

one group are greater than values from the other group, hence, when the null hypothesis of

the U -test is true, the PS is 50% (Conover, 1999, p. 274; Reiczigel, Zakariás, & Rózsa, 2005).

The formula for U is: #(y2 > y1) + 0.5×#(y2 = y1), and U is the numerator in the PS

formula by Vargha and Delaney (2000). One can leverage this connection between both

statistics to conduct inference on the PS (Ruscio & Mullen, 2012; Vargha & Delaney, 2000).

Conover and Iman (1981) showed that one can obtain nonparametric results by

applying parametric methods to rank transformed data. We exploit this approach to lay out

a method for estimating the PS, which begins by ranking the data. There are many

procedures for ranking data (Conover & Iman, 1981). We prefer normal scores using the

rankit procedure for two reasons. Penfield and McSweeney (1968) recommended normal

scores to psychologists on the basis of their efficiency. Moreover, the rankit procedure

normalizes the ranks, such that the empirical density of rankits is close to the standard

normal likelihood (Soloman & Sawilowsky, 2009). Rankits are: y∗ = Φ−1
(
(r− 0.5)/N | 0, 1

)
,

where Φ−1(·) is the normal quantile function, r are the ranked data, and N is the total
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sample size. To compute the PS, we utilize the formulation for the PS by McGraw and Wong

(1992) on the rankit statistics: P̂S = Φ(µ̂∗
2 − µ̂∗

1 | 0,
√
σ̂∗2

2 + σ̂∗2
1 ), where ∗ denotes rankit

statistics. We expect this normal approximation to be adequate for rankits, since rankits will

be approximately standard normal, unless a considerable proportion of the data are tied.

A Bayesian model for the probability of superiority

We will assume the rankits are Gaussian with means and standard deviations that

depend on group membership, y∗
j ∼ N (α∗ + β∗

j , σ
∗
j ). The average of the group means is α∗,

β∗
j captures the deviation of each group j from α∗ and |β∗

2 − β∗
1 | is the difference between the

groups. Since we are using rankits, we have considerable prior information about the data.

The rankits will have a mean that is close to zero, and a standard deviation that is about

one. Additionally, when all the values in group 2 are greater than the values in group 1,

i.e. PS = 100%, the data in each group will be a different truncated normal distribution.

Accordingly, the means of groups 1 and 2 are −φ
(
Φ−1(p | 0, 1)

)
/p and

φ
(
Φ−1(p | 0, 1)

)
/(1− p) respectively, where φ(·) is the standard normal density function and

p is the proportion of cases in group 1.1 As an example, when ties are limited in the data

and p = 50%, max(|β∗
2 − β∗

1 |) ≈ 1.60 and max(|α∗|) ≈ 0. As the level of imbalance in group

sizes increases, max(|β∗
2 − β∗

1 |) and max(|α∗|) increase as shown in Figure 1.

We also computed |α∗| and |β∗
2 − β∗

1 | for varying levels of p when Cohen’s d = 1. We

consider d = 1 to be at the limit of what is plausible or believable for educational

interventions related to achievement; the 99th percentile of effect sizes from such educational

interventions is about Cohen’s d = 0.9 (Table 1 in Kraft, 2018). When Cohen’s d ≤ 1, α∗

will largely fall in the (−0.5, 0.5) interval and |β∗
2 − β∗

1 | will largely fall in the [0, 1) interval,

see Figure 1.

1 Based on the equation for the mean of truncated normal data.
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We now make prior choice recommendations. We follow a subjective Bayesian

approach (Goldstein, 2006) in the manner prescribed by Greenland (2006). Greenland (2006)

recommended using the middle 95% interval of prior distributions to a-priori identify the

plausible values for parameters. Given the plausible range for α∗, we expect a prior with zero

mean and a standard deviation that is a quarter of most of the data, such that

Pr(−.5 < α∗ < .5) = 95%. And α∗ ∼ N (0, 0.25) satisfies this expectaion. We expect one β∗
j

will be positive and the other negative. And given the plausible range for |β∗
2 − β∗

1 |, we

expect Pr(−0.5 < β∗
j < 0.5) = 95%, hence, β∗

j ∼ N (0, 0.25) suffices. Finally, we expect that

Pr(0 < σ∗
j < 1.5) = 95%; hence, σ∗

j ∼ N+(0, 0.75) suffices. This is a reasonable expectation

given that rankits will have a standard deviation that is about 1, but one of the σ∗
j values

may be somewhat higher. Our complete model is:

y∗
j ∼ N (α∗ + β∗

j , σ
∗
j )

α∗ ∼ N (0, sα = 0.25), β∗
j ∼ N (0, sβ = 0.25), σ∗

j ∼ N+(0, sσ = 0.75)
(2)

Researchers may modify sα, sβ or sσ based on context-specific information. The PS is:

Φ(µ∗
2 − µ∗

1 | 0,
√
σ∗2

2 + σ∗2
1 ). We use the posterior samples of µ∗

2, µ∗
1, σ∗

2 and σ∗
1 to compute

the posterior samples for the PS.

Method

We conducted a simulation study to test the estimation quality of our Bayesian

approach. We compared the Bayesian approach against the formula of McGraw and Wong

(1992) applied to rankits (hereafter rankits), the parametric approach of McGraw and Wong

(1992) (hereafter parametric), and the non-parametric approach of Vargha and Delaney

(2000), hereafter nonparametric. For non-Bayesian approaches, we performed the BCa

bootstrap with 2000 replications for inference.
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We used Stan (Carpenter et al., 2017) as our Bayesian computation engine. Stan uses

the No-U-Turn sampler (NUTS). NUTS, an algorithm for sampling continuous parameters,

is more efficient than the Gibbs sampler (Hoffman & Gelman, 2014). For Bayesian

parameter estimation, we drew 2000 posterior samples across 4 parallel chains, and retained

the final half of the samples within each chain. This left us with 4000 samples for inference.

As a crude check of sampling convergence, we computed the potential scale reduction factor

(R̂) and effective sample size (neff) for the posterior samples of the PS. R̂ close to 1 and neff

above a thousand are preferred (Carpenter et al., 2017).

We performed 500 iterations within each design condition. The total sample size

within each iteration was always 70; a small sample size but one that is common enough in

educational interventions (Slavin & Smith, 2009). To test estimation quality of the different

methods, we produced a chart showing the distribution of the estimated PS marking out the

mean, interquartile range, 5th, and 95th percentiles. We also marked out the true population

parameter for the PS for comparison. We used the MSE
(∑[(P̂S − PS)2]/500

)
to measure

estimation quality because it captures both bias and variance and is helpful for comparing

the efficiency of estimators regardless of their bias (e.g. Davis-Stober, Dana, & Rouder,

2018). To test the inference for the frequentist methods, we reported the empirical coverage

rate (ECR) of the 95% confidence intervals. The ECR is an estimate, so we computed

Jeffrey’s 90% CI (Brown, Cai, & DasGupta, 2001) to get a sense of the uncertainty in the

ECR estimate.

We simulated data that we deemed somewhat realistic. The data generation process

for binary assignment was x ∼ Bern(q); where q ∈ {.3, .5}. For the outcome, we randomly

sampled integers, i = 0, 1, 2, . . . , 100 with replacement, according to their respective sampling

weights, f(i/100 | α, β), where f(·) is the beta density function. For x = 0 (the control

group), α = 11/2, β = 11/6; hence the control mean, standard deviation and skew were 75,

15 and −0.71 respectively. For x = 1 (the treatment group), α = 12, β = 3; hence the
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treatment mean, standard deviation and skew were 80, 10 and −0.71 respectively. The

treatment improved the outcome, and the treatment group was relatively homogenous, see

Figure 2. The true PS was:
( ∫ 1

0 f(x | 11/2, 11/6)[1− F (x | 12, 3)]dx
)
/100 = 59.63%, where

x = i/100 and F (·) is the beta distribution function (equation 5 in Chechile, 2019). The

data are supposed to represent test scores when there is a ceiling on performance, and the

ability of test takers is not much lower than the ceiling on average. Thus, the data were

negatively skewed. Additionally, the data were discrete (integers only) as is typical for tests,

hence, there were ties in the data.

Results

Across design conditions, the maximum R̂ and minimum neff were 1.002 and 3202

respectively, suggesting parameter estimation converged. We report the results for the study

in Figure 3. Across both conditions, the rankits and nonparametric estimators were least

biased, while the Bayesian and parametric estimators were downwardly and upwardly biased

respectively. However, the Bayesian estimator had low variance such that the Bayesian

estimator MSEs were relatively low, about 65% of the next best estimator: the rankits

estimator. The MSE of the nonparametric estimator was always highest and the MSE of

each estimator was always lower when the design was balanced. Finally, most methods had

acceptable ECRs.

Discussion

In this paper, we have presented a Bayesian estimator for the PS and demonstrated the

adequacy of this estimator relative to other methods for estimating the PS at a small but

common sample size in educational interventions. We consider the results from the

simulation study to be informative for empirical practice. The non-parametric estimator by
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Vargha and Delaney (2000) seemed unbiased but was high variance, such that the MSE was

high. The parametric estimator by McGraw and Wong (1992) was upwardly biased, without

substantive variance reduction. And the Bayesian estimator was downwardly biased with

substantive gains in variance reduction, such that the Bayesian estimator was the most

adequate estimator. Moreover, the Bayesian analysis allows for asking substantively

interesting of the data. For example, one can ask: what is the probability that from 10

comparisons of students in the treatment and control group, the students in the treatment

group will have a higher score at least 6 times, i.e. Pr(PS ≥ 60%)?

Based on the limited simulation work in this study and the wealth of information a

Bayesian analysis can provide (Kruschke, 2013), we would recommend Bayesian estimation

of the PS. In the future, we will study the performance of the Bayesian approach under a

larger variety of simulation conditions. And we will develop extensions for multilevel data

structures, given that such structures are commonplace in educational settings (Goldstein,

1995).
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Figure 1 . Mean of group means (panel A) and difference between groups (panel B) on the

rankit scale as a function of proportion of cases in the lesser valued group, when there are no

ties in the data. Solid lines represent theoretical maximums, dashed lines are empirical results

when Cohen’s d = 1 for simulated iid data of sample size of one million. Hence, Cohen’s d of

1 translates to difference between group means that is just under one on the rankit scale.
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Figure 2 . Density of data for simulation study. There were ties in the data, and each bar in

the histogram represents an integer between 0 and 100.
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Figure 3 . Results from simulation study 2. MSE values on the right of panel A are scaled by

1000 for convenience. The lineranges in panel A represent the 5th and 95th percentiles of the

PS estimates, the shorter thicker bars represent the interquartile range, and the points are the

mean PS estimates. Error bars around ECRs are Jeffrey’s 90% CI. The black vertical dashed

lines represent the true population parameter in panel A, and the nominal coverage rate in

panel B. The red vertical dashed lines represent subjective limits within which acceptable

ECRs should fall (liberal standard in Bradley, 1978).
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