
Probability of superiority for comparing two groups of clusters

James Uanhoro
Research, Measurement & Statistics, Department of Educational Psychology

University of North Texas

Abstract
The probability of superiority (PS) has been recommended as a simple to in-
terpret effect size for comparing two independent samples – there are several
methods for computing the PS for this particular study design. However,
educational and psychological interventions increasingly occur in clustered
data contexts; and a review of the literature returned only one method for
computing the PS in such contexts. In this paper, we propose a method
for estimating the PS in clustered data contexts. Specifically, the proposal
addresses study designs that compare two groups and group membership
is determined at the cluster level. A cluster may be: (i) a group of cases
with each case measured once, or (ii) a single case with each case measured
multiple times, resulting in longitudinal data. The proposal relies on non-
parametric point estimates of the PS coupled with cluster-robust variance
estimation, such that the proposed approach should remain adequate regard-
less of the distribution of the response data. Using Monte Carlo simulation,
we show the approach to be unbiased for continuous and binary outcomes,
while maintaining adequate frequentist properties. Moreover, our proposal
performs better than the single extant method we found in the literature.
The proposal is simple to implement in commonplace statistical software and
we provide accompanying R code. Hence, it is our hope that the method
we present helps applied researchers better estimate group differences when
comparing two groups and group membership is determined at the cluster
level.

According to J. Cohen (1990), the “primary product of a research inquiry is one or more

measures of effect size, not p values.” This is a view buttressed by Wilkinson and the APA Task Force

on Statistical Inference (1999), who advised that researchers should “always present effect sizes for

primary outcomes” (p. 599). Given that effect sizes are sample statistics, they are only estimates,

thus, it is wise to communicate the uncertainty about such estimates. Confidence intervals are a

useful tool for communicating uncertainty; the publication manual of the American Psychological

Association (2020) describes the reporting of confidence intervals as “generally the best reporting
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strategy” (p. 88).

We focus on the probability of superiority (PS) as an effect size for comparing two samples.

The PS is the probability that a randomly selected score from one group exceeds a randomly

selected score from another group (McGraw & Wong, 1992). McGraw and Wong (1992) used the

term common language effect size to describe what we call the PS. The PS as a term was introduced

by Grissom (1994); other names for this measure include: measure of stochastic superiority (Klotz,

1966), stress-strength relation (Kotz, Lumelskii, & Pensky, 2003), A (Vargha & Delaney, 2000) and

several others.

In this paper, we extend the PS to two-level clustered data contexts. Specifically, we

propose a method for estimating the PS that would be adequate for two-arm cluster randomized

trials (CRT), or when the grouping variable or experimental assignment is at level two. Our survey

of the literature uncovered one approach for estimating the PS in such contexts (Zou, 2021). We

propose an alternative method and compare the methods using Monte Carlo simulation.

In the remainder of this introduction section, we motivate the need for estimating the PS

in clustered data, we review the extant method for estimating the PS in Zou (2021), then we

present our proposal. In the next section, we run Monte Carlo simulations to assess the adequacy

of our proposed method and compare its performance to the method in Zou (2021). Afterwards,

we provide two applied examples for demonstration. We conclude with a discussion section where

we address potential extensions to the method we have proposed.

Why estimate the PS?

Kelley and Preacher (2012) defined effect size as “a quantitative reflection of the magnitude

of some phenomenon that is used for the purpose of addressing a question of interest.” This

broad definition leaves room for different conceptualizations of effect size. The most common

conceptualization is differences in location between two groups with resulting effect sizes such as

the simple or standardized mean difference.

The PS relies on a different conceptualization of effect size to location differences. The

PS can be motivated as an ordinal effect size (Cliff, 1993) that is often more aligned with the

hypotheses of experimenters i.e. the chance that values from one group exceed values from a

second group. This rationale is particularly important when the interval property of response data
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is not guaranteed. In such situations, the usefulness of mean differences is questionable. Even when

the interval property of data is guaranteed, differences in means may be non-representative of the

bulk of the data (e.g. under severe skew), or non-robust (e.g. under data contamination). The PS

may be then be alternatively motivated as a robust measure for two-group comparison (e.g. Cliff,

1993; Li, 2015; Vargha & Delaney, 2000).

Another motivation for the PS is its ease of interpretation. McGraw and Wong (1992)

called the PS the common language effect size because they expected that nonstatisticians will

easily understand the term. Moreover there is empirical evidence to support the view that the PS

is easier to interpret than other commonplace effect sizes (Brooks, Dalal, & Nolan, 2014). This

motivation and the supporting evidence suggest that the PS should be computed for data whether

or not they are interval.

To demonstrate the utility of the PS, consider a hypothetical comparison of two groups A

and B on an outcome with the following effect sizes: mean difference (A − B) of 5, a standardized

mean difference of 0.2, and a PS (A > B) of 55%. Were we to meet an individual from group A and

another from group B, there is little we can conclude about the differences between both individuals

on the basis of the location differences without additional information about (the distribution of)

the response data in the original study. However, we can guess that there is an 11–in–20 chance

that the individual from group A has a higher score than the individual in group B.

Finally, we note that methods for estimation of and inference about the PS for comparing

two independent samples have reached a mature stage. Vargha and Delaney (2000) provides a

nonparametric approach for inference that is adequate regardless of the distribution of the observed

data. Moreover, Kotz et al. (2003) contains several parametric formulae for the PS that can improve

estimation efficiency when the parametric model is adequate for the data. Additionally, results from

Ruscio and Mullen (2012) show that the bias-corrected and accelerated (BCa) bootstrap maintains

very well-behaved confidence intervals for the PS amongst a variety of analytic and bootstrap-

based options. Beyond comparison of two independent samples, there is work by Li and Waisman

(2019) and Li and Tze (2021) that advance estimation and inference about the PS for bivariate

relationships. Ruscio and Gera (2013) cover extensions of the PS to paired samples and multi-

group settings. Probabilistic index models (De Schryver & De Neve, 2019; Thas, Neve, Clement,

& Ottoy, 2012) represent a regression framework for PS estimation and inference that allows for
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PS estimation under a variety of settings including covariate adjustment.

Clustered data are increasingly present in educational and psychological research (McNeish,

Stapleton, & Silverman, 2017). However, methods for estimating the PS in these contexts are sparse

– in our review of the literature, we found only one method. This is in contrast to standardized mean

differences where there is substantial work on estimation and inference for a variety of clustered data

study designs (e.g. Hedges, 2011, 2016; Lai & Kwok, 2014, 2016). Given the increasing prevalence

of these designs and the benefits of PS estimation, there is need to extend the PS to clustered data

contexts.

Estimating the PS in two-level clustered data contexts

We begin this section by reviewing the single approach we found in the literature for esti-

mating and performing inference about the PS when group membership is at level two.

Extant method based on placement scores. Zou (2021) developed an approach that

begins by calculating placement scores (Delong, Delong, & Clarke-Pearson, 1988).1 Given two

groups A and B, the placement score for each case i in group A is the percentile of case i’s response

data point within group B response data. The reverse is done for each case in group B. One then

regresses the placement scores on a group indicator with a random intercept on cluster membership.

The group difference coefficient and its standard error is used to compute confidence intervals (CI)

based on the t distribution with G − 2 degrees of freedom, where G is the number of clusters. A

simple linear transformation transforms the group difference coefficient and its CI to the PS and

its CI, PS = (coef + 1)/2. Zou (2021) explored some alternative methods for computing confidence

intervals, and found the applying an ArcSinh transformation during interval estimation can improve

inference especially when the PS is low or high.

Current proposal

Our proposal for estimation and inference about the PS begins with the nonparametric

formulation by Vargha and Delaney (2000) for two independent samples:

P̂S = [#(y2 > y1) + 0.5 × #(y2 = y1)]/(n1n2) (1)
1While the method is based on the work of Delong et al. (1988), we believe Hanley and Hajian-Tilaki (1997) are

responsible for coining the term “placement”.
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where #(·) is the count function, y1 and y2 are the data for group 1 and group 2 respectively,

with n1 and n2 as the corresponding sample sizes. In equation 1, we compare each data point in

a group with all the data points in the other group using the ordinal information in the data.

Under this formulation, the PS is directly proportional to the Mann-Whitney U -statistic (Vargha

& Delaney, 2000).

We note that one can perform inference about P̂S by treating the task as inference about a

proportion with a given sample size (n1 + n2). There are several methods for inference about such

a proportion (Newcombe, 1998), but we have several desiderata. We desire a method that (i) can

easily be extended to multiple proportions; (ii) does not introduce parametric assumptions; and

(iii) has potential to account for covariates such that the approach can be scaled up. Requirement

(i) includes most methods for inference about proportions. Requirement (ii) eliminates methods

with important distributional assumptions such as beta-regression, while requirement (iii) suggests

the need for a regression style model.

The fractional regression model of Papke and Wooldridge (1996), a quasi-likelihood ap-

proach, meets all three requirements. This is a model for probabilities with 0 and 1 as plausible

outcome values, as opposed to most probability models where 0 and 1 are not plausible values.

There is no need to specify the correct distribution for the probabilities to obtain consistent esti-

mates. However, heteroskedasticity consistent standard errors are needed for adequate inference.

With this background, we now present the method to address the scenario where group

membership occurs by cluster. Consider the hypothetical scenario where 10 clusters were assigned

to the treatment group, and 20 clusters were assigned to the control group. To estimate the PS in

this scenario, we recommend the following steps:

1. Calculate pairwise PS estimates using equation 1 comparing each cluster in the treatment

group to all clusters in the control group. There will be 200 (10 × 20) PS estimates.

2. Perform intercept-only weighted fractional regression with the PS estimates as the outcome,

and the weights as the total number of cases for each comparison. A weighted analysis ensures

clusters with larger number of cases contribute more to coefficient estimation. The data for

the regression will comprise 200 PS estimates and 200 sample sizes. One can assume any

reasonable link function for proportion data (e.g. logit, probit) – we assume logit in this
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paper.2

3. The intercept can then be transformed to the original probability scale to obtain the PS.

For each cluster j in the treatment group and each cluster k in the control group, the

pairwise PS estimates in step 1 are:

P̂Sjk = [#(yj > yk) + 0.5 × #(yj = yk)]/(njnk) for j ∈ {1, . . . , J}, k ∈ {1, . . . , K} (2)

where y. and n. are the data and sample sizes for their corresponding groups.

The logistic regression in step 2 maximizes the log-likelihood:

J∑
j=1

K∑
k=1

(nj + nk)
[
P̂Sjk ln

[
G(θ̂)

]
+ (1 − P̂Sjk) ln

[
1 − G(θ̂)

]]
(3)

where θ̂ is the intercept on the logit-scale, and G(θ̂) = (1+e−θ̂)−1, the inverse-logit function.

Hence, G(θ̂) is the estimated PS. Given that this is an intercept-only logistic model, G(θ̂) is simply

the weighted mean of pairwise PS estimates:

∑J
j=1

∑K
k=1(nj + nk)P̂Sjk∑J

j=1
∑K

k=1(nj + nk)
(4)

One problem with the above approach is that the outcome data for the fractional regression

(pairwise PS estimates) are not independent from each other. Each PS estimate comes from two

clusters, and the clusters repeat in the data. Hence, the resulting standard errors underestimate

coefficient variability. We apply cluster-robust inference to remedy this:

1. Apply a two-way cluster-robust variance estimator (CRVE, Cameron & Miller, 2015) using

the two cluster IDs that form each PS.

2. Compute the CI for the intercept on the logit-scale using the updated intercept standard

error. The interval should be computed using the t distribution with J + K − 2 degrees of
2In R, the regression would be: glm(formula = PS ∼ 1, family = quasibinomial, weights = N), where PS are the 200

P̂S estimates and N are the 200 sample sizes.
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freedom rather than the normal distribution – this can improve inference especially when the

number of clusters is small (Cameron & Miller, 2015; Donald & Lang, 2007).

3. Transform the interval back to the probability scale to obtain the CI for the estimated PS.

Assuming se(θ̂) is the resulting cluster-robust standard error for the intercept, the two-tailed

CI for the PS is: G
(
θ̂ ± se(θ̂) × t1−α/2,ν)

)
, where ν = J + K − 2. In summary, the approach we

present is a method for inference about the weighted mean of PS estimates obtained from pairwise

comparisons of clusters.

In the next section, we run Monte Carlo simulations to assess the adequacy of our proposed

method and compare its performance to the method in Zou (2021).

Simulation studies

In this section, we run three simulation studies to test the adequacy of the proposed frac-

tional regression approach with CRVE. The context for the first study was a two-arm cluster

randomized trial with a normally distributed continuous outcome and a null effect. We compared

the fractional regression approach to the BCa intervals – the optimal method for independent sam-

ples – which ignore clustering and to the method based on placement scores (Zou, 2021). Both the

fractional regression and placement score approaches performed favourably, while the BCa intervals

are shown to be inadequate – this is to be expected since the BCa intervals assume the data are

independent. In the second study, we stress-tested both the fractional regression and placement

score approaches with non-normal continuous outcomes to see the conditions under which they

are likely to fail. The fractional regression approach was adequate across all conditions, while the

method based on placement scores was not. In the final study, we tested the adequacy of both

approaches applied to a binary outcome – both methods were adequate. The specific placement

score approach we used was multilevel regression on the placement scores with the ArcSinh trans-

formation for interval estimation – the most efficient option based on results in Zou (2021). The

specific CRVE we used was the CR3 variant (Bell & McCaffrey, 2002).

Assessment metrics. For all simulations, we assessed the approaches for accuracy and

inference. We defined accuracy using the mean-squared error (MSE), as it subsumes both bias

and variability of the estimator. We note ahead of time that all approaches were unbiased across
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all conditions such that the MSE was a measure of estimator variability. We defined adequate

inference by the ability of the 95% CI to maintain a 95% empirical coverage rate (ECR). We

adopted the liberal condition in Bradley (1978), such that we assumed the ECR adequate whenever

the estimated ECR fell between 92.5% and 97.5%.

All normal distribution notation follows mean-variance notation. All simulation code is

available at https://osf.io/xd3ba/.

Simulation study 1

In this study, we simulated data according to the following model:

xc ∼ Bernoulli(p), θc ∼ N (0, τ), yi ∼ N (θc[i], 1 − τ) (5)

where xc is a treatment indicator (1 = treat, 0 = control) for cluster c – it is Bernoulli with

mean p. θc is the random intercept which varies by cluster membership – it is normal with mean

0 and variance τ . And yi is the outcome for person i in cluster c – it is normal with a mean that

depends only on the random intercept, and has error variance, 1 − τ . The treatment assignment

has no influence on the outcome, hence this scenario is an exact null effect for the treatment and

the population PS was 50%. Additionally, the model above functions such that τ is the intra-class

correlation (as long as τ < 1).

Simulation conditions. We assumed there were 30 clusters, with an average of 10 cases

per cluster,3 resulting in a total sample size of 300 cases on average. A minimum of 30 clusters is

a common rule of thumb for clustered data (Huang, 2018), while 10 mimics the size of small class-

rooms. We created four conditions by varying both p
(
p ∈ {33.3̄%, 50%}

)
and τ

(
τ ∈ {5%, 20%}

)
.

Our expectation is that when p is lower than .5 (signifying unbalanced assignment to treatment

and control), the estimated effect would be more variable. We similarly expected the estimated

effect to be more variable with higher ICCs, as this corresponds to greater noise at the level of the

treatment variable. Additionally, we expect the BCa interval to fail more at higher ICCs given the

increased lack of case independence. We ran 2,000 replications per condition using the SimDesign

package (Chalmers & Adkins, 2020) in R.

3The exact number of cases per cluster was round (N (10, 1)) to simulate some variability into the process.

https://osf.io/xd3ba/
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Figure 1

Results from simulation study 1

Note. Panel A. Numbers are MSE values, multiplied by 1000 for convenience. The points are the mean
PS, errorbars represent the 5th and 95th percentiles of the PS estimates across replications. The black
vertical dashed line represents the true population PS of 50%. Panel B. Errorbars around ECRs (points) are
Jeffrey’s 90% CI. The black vertical dashed line represents the nominal coverage rate of 95%. The outer red
vertical dashed lines represent subjective limits within which acceptable ECRs should fall (liberal standard
in Bradley (1978)).

Results. We report the results in Figure 1. All approaches resulted in unbiased estimates

of the PS and comparable estimation efficiency within any given condition. As expected, estimates

were more variable with unbalanced assignment of clusters to the groups and when the ICC was

higher. Notably, the fractional regression and placement score approaches maintained adequate

inference across the four conditions. The BCa intervals failed for all conditions with increased

failure at higher ICCs.

These results rule out the BCa intervals as an inferential tool for the PS when the grouping

variable is at level two. We now stress-test the two other approaches to see the conditions under

which the approaches are likely to fail.
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Simulation study 2

In this study, we tested the clustered data approaches (fractional regression and placement

scores) under the assumption that the data were bounded continuous data between 0 and 1. Such

data would be commonplace in educational applications, most commonly as grades, or psychological

applications, most commonly as the average of several items with Likert response scales or visual

analog scales, rescaled to the 0–1 interval, or whenever data are analyzed as percentage of maximum

possible scores (P. Cohen, Cohen, Aiken, & West, 1999). We assumed the data were logit-normal

i.e. the logit of the data were normally distributed and simulated data according to the following

model:

xc ∼ Bernoulli(p), θc ∼ N (α + β × xc, τ × (δ + γ × xc))

yi ∼ Logit-normal
(
θc[i], (1 − τ) × (δ + γ × xc[i])

)

where xc reains an indicator for assignment to the treatment group. We permitted the

two groups to have different means and variances on the normal scale, resulting in different shapes

for the data. Additionally, for the logit-normal distribution, the mean of the normal data prior

to logit-transformation is the median of the resulting bounded data since the median is invariant

under monotonic transformations.

The PS is invariant under monotonic transformations like the logit, such that the PS for-

mula for normal data continues to apply to the PS for the resulting proportions after the logit

transformation. Hence the population PS was Φ(β/
√

δ + δ + γ) (McGraw & Wong, 1992, where Φ

is the standard normal distribution function).4 Finally, we varied α, β, δ and γ to produce four

distinct patterns for the data which we discuss below, also see Figure 2.

4Broadly, one can use integration to obtain the population PS given known parametric distributions for the data.
In the case of continuous variables, the PS is: P (X > Y ) = P (Y = y & X > y) = P (Y = y) × P (X > y) =
fY (y) × (1 − FX(y)) =

∫ b

a
fY (y)(1 − FX(y))dy where fY (·) is the density function of Y , FX(·) is the distribution

function of X, and a and b are the known theoretical limits of X and Y .
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Figure 2

Data patterns for simulation study 2

Note. Distributions of the control (solid black) and treatment (dashed red) groups on the 0–1 scale.

Data #1. These data represent a situation where the treatment and control groups are

identical, i.e. PS = 50%. Both groups have left-skewed distributions (e.g. participants’ scores were

relatively high) with median score of 70%. Precisely: [α, β, δ, γ] = [0.847, 0, 1, 0].

Data #2. These data represent a situation where the treatment increases the scores of

some participants while causing others to fall behind resulting in PS of 50%. Both groups have

left-skewed distributions with median score of 70%. Precisely: [α, β, δ, γ] = [0.847, 0, 1, 1.25]. In

this scenario, the mean of the control group actually exceeds the mean of the treatment group.

Data #3. These data represent a situation where the treatment mostly increases the

scores of participants resulting in PS of 61.8%. Both groups have left-skewed distributions with

treatment and control median scores of 70% and 80% respectively. Precisely: [α, β, δ, γ] =

[0.847, 0.539, 1, 1.25].
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Data #4. These data represent a situation where the treatment overwhelmingly increases

the scores of participants resulting in PS of 86.8%. Such a PS would be unrealistic for the bulk of

educational interventions, though it might be possible with psychological data.5 Inference about the

PS is more difficult as the PS becomes more extreme (Ruscio & Mullen, 2012), hence we include

this pattern as a more extreme test of both approaches. The control group is symmetric with

median of 50% and the treatment group is left-skewed with median of 80%. Precisely: [α, β, δ, γ] =

[0, 1.386, 0.5625, 0.4375].

For each of the data patterns above, we retained the sample size specifications from study

1 (30 clusters, 10 cases per cluster on average), maintained p ∈ {33.3̄%, 50%} but altered τ ∈

{5%, 20%, 50%} – we included a 50% ICC condition that would be realistic for longitudinal data

where each cluster is a case measured multiple times. p and τ maintain their meanings from study

1. This resulted in six conditions per data pattern and 24 simulation conditions in all. We ran

4,000 replications per condition.

5Assuming the data are normally distributed, a PS of 86.8% is approximately a Cohen’s d value of 1.6. This
follows from the relation d = Φ−1(PS) ×

√
2.



CLUSTERED PS 13

Figure 3

Results from simulation study 2 – non-normal outcomes

Note. Panel A. The points are the bias and errorbars represent the 5th and 95th percentiles of the bias

estimates. The black vertical dotted line represents the ideal bias of 0. Panel B. Errorbars around ECRs

(points) are Jeffrey’s 90% CI. The black vertical dashed line represents the nominal coverage rate of 95%.

The outer red vertical dashed lines represent subjective limits within which acceptable ECRs should fall

(liberal standard in Bradley (1978)).
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Results. We report the results in Figure 3. Both approaches remained unbiased with

comparable estimation efficiency within any given condition. The fractional regression approach

maintained adequate inference across all 24 conditions, although its ECR was just within acceptable

limits for the second to last row in Figure 3 with: (extreme) data pattern #4, unbalanced assignment

of clusters to groups and ICC of 50%. On the other hand, outside of data pattern #1, the placement

score approach was often inadequate with unbalanced assignment of clusters to the treatment group

(P:33% conditions) – this condition was untested in most simulations in Zou (2021). These results

show that there are conditions under which the fractional regression approach is more reliable than

the approach based on placement scores.

Simulation study 3

In this study, we tested the clustered data approaches (fractional regression and placement

scores) for binary outcome data. To simulate such data, we assumed the data were latent normal

prior to dichotomization:

xc ∼ Bernoulli(p), θc ∼ N (α + β × xc, τ) , ηi ∼ N
(
θc[i], 1 − τ

)
, yi = I(ηi > 0)

where xc remains an indicator for treatment assignment. The above equation for the binary

outcome (yi) is equivalent to a probit regression formulation for the data. The population PS is

(κ + 1)/2, where κ is the risk difference or average difference in probabilities between both groups

(Φ(α + β) − Φ(α), Zou, 2021). We varied α and β to obtain different means for each group:

1. Data #1: Both groups have a mean of 70% – a null condition with population PS of 50%.

Precisely: α = Φ−1(.7), β = 0.

2. Data #2: The control group has a mean of 70% and the treatment group has a mean

of 80%, a non-null condition with population PS of 55%. Precisely: α = Φ−1(.7), β =(
Φ−1(.8) − Φ−1(.7)

)
.

3. Data #3: The control group has a mean of 50% and the treatment group has a mean of 80%,

a non-null condition with population PS of 65%. A 30%-point increase would be a marked
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effect on a binary outcome. In this exact scenario, this effect amounts to an odds-ratio of 4,

exp (inv-logit(.8) − inv-logit(.5)). Precisely: α = Φ−1(.5), β =
(
Φ−1(.8) − Φ−1(.5)

)
.

For each of the data patterns above, we retained the sample size specifications from

study 2 (30 clusters, 10 cases per cluster on average), and maintained p ∈ {33.3̄%, 50%} and

τ ∈ {5%, 20%, 50%}. p and τ maintain their meanings from the previous studies. This resulted in

six conditions per data pattern and 18 simulation conditions in all. We ran 4,000 replications per

condition.

Results. We report the results in Figure 4. Both approaches remained unbiased with

comparable estimation efficiency within any given condition and maintained adequate inference

across all conditions. This result suggests both approaches may be relatively robust when applied

to binary data. It is worth noting that under unbalanced cluster membership, the ECR for the

placement scores approach was consistently higher than the ECR from the fractional regression

approach.

Summary of simulation results

Fractional regression with CRVE can be used to estimate the PS while maintaining adequate

inference. This approach should lead to similar conclusions as the placement scores approach

in many scenarios. However, there may be disagreement between both methods when cluster

assignment to or cluster membership in groups is unbalanced. When such divergence occurs, our

findings lead us to believe the fractional regression approach with CRVE may be more reliable.
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Figure 4

Results from simulation study 3 – binary outcomes

Note. Panel A. The points are the bias and errorbars represent the 5th and 95th percentiles of the bias

estimates. The black vertical dotted line represents the ideal bias of 0. Panel B. Errorbars around ECRs

(points) are Jeffrey’s 90% CI. The black vertical dashed line represents the nominal coverage rate of 95%.

The outer red vertical dashed lines represent subjective limits within which acceptable ECRs should fall

(liberal standard in Bradley (1978)).

Data analysis examples

Code for the data analysis examples is available at https://osf.io/xd3ba/.

An example from a cluster randomized trial. Blair and Raver (2014) randomized

schools to either a control or treatment group. Kindergartners in the treatment group were exposed

https://osf.io/xd3ba/
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to an approach “that embeds support for self-regulation, particularly executive functions, into

literacy, mathematics, and science learning activities.” The researchers collected several outcomes.

For this demonstration, we analyzed the pupils’ applied problems score at the end of first grade.

After missing data deletion, there were 661 pupils in 31 schools (17 in the treatment group), about

21 pupils per school with the smallest school having 9 pupils.6 The ICC for this outcome was 16%.

The PS with BCa intervals (ignoring the clustering) was 53.6%, 95% BCa CI [49.5%, 58.2%]. The

PS with 95% interval based on fractional regression with CRVE was 53.9%, 95% CI [43.2%, 64.2%].

And the results based on the placement scores was 53.8%, 95% CI [43.4%, 63.8%]. The intervals

accounting for clustering had more than double the width of the BCa intervals. And though both

intervals accounting for clustering were similar, fractional regression with CRVE intervals produced

slightly wider intervals. Regardless of estimation method, there was about 54% chance that scores

from pupils in the treatment group were higher than scores from pupils in the control group.

Describing existing differences between groups. We analyzed differences in math

achievement between public and private school students in the high school & beyond dataset (Rau-

denbush & Bryk, 2002). There were 7,185 students from 160 schools (70 private schools), about 45

students per school with the smallest school having 9 students. The ICC for this outcome was 18%.

We were interested in the probability that scores from private schools were higher than scores from

public schools. The PS with 95% interval based on fractional regression with CRVE was 61.5%,

95% CI [58.0%, 64.9%]. Results based on the placement scores was 61.5%, 95% CI [57.9, 65.0%].

Again, these intervals were about the same, but the placement score intervals were slightly wider.

There was about 61.5% chance that scores from private school students were higher than scores

from public school students.

Discussion

We begin by reviewing the simulation results. The simulation showed that fractional regres-

sion with CRVE can be used to estimate the PS while maintaining adequate inference. We believe

that this approach will lead to similar conclusions as the placement scores approach in many sce-

narios. However, when there is a disagreement between fractional regression and the placement

score approaches, our findings lead us to believe the fractional regression approach with CRVE
6The paper mentions 29 schools, but the publicly available data has 31 school IDs.
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may be more reliable. This improved performance of fractional regression is especially likely when

cluster assignment to groups is unbalanced.

Additionally, we believe these findings to be robust to the distribution of the data. The

fractional regression approach introduces no distributional assumptions for the PS estimates which

are based on the nonparametric estimator of Vargha and Delaney (2000). The data for simulation

study 2 were markedly non-normal, while simulation study 3 was based on binary data. Open

questions about the proposed method with regard to inference include: How low can the number

of clusters be? How high can the ICC be? How variable can the within-cluster sample sizes be?

These questions are common to multilevel designs. We have shared our simulation code, making it

easier for others interested in these questions to examine them.

We have laid out one approach to estimate the PS for a level-two grouping variable. We now

speculate on some alternative methods that may be adequate. Cluster bootstrap methods (Field

& Welsh, 2007) should maintain adequate inference for the PS computed from the original data.

To do this, the PS would be calculated in the usual way (Vargha & Delaney, 2000) but the data

would be resampled using cluster bootstrap methods to obtain inference about the estimated PS.

Alternatively, one can take a Bayesian model-based approach that assumes the model for the data

is rich enough to describe the distribution of the treatment and control groups. Given the assumed

distribution, one can use either analytic methods or integration to compute the PS alongside the

posterior samples of the PS. The disadvantage of this approach is that it is fully parametric hence

the model must truly capture the data. However, when the model assumptions are met, we can

expect the resulting PS estimates to be more efficient. Alternatively, one may modify the placement

scores approach developed by Zou (2021) to use CRVE instead of multilevel modeling. We intend

to investigate some of these approaches in the future.

An additional opportunity is the potential to adjust for covariates, with the intended benefit

of reducing estimate uncertainty. This is one of the strengths of probabilistic index models, but

these models have not been extended to clustered data contexts. If one only intends to adjust for

level two covariates, probabilistic index models suggest one way forward for the proposed fractional

regression approach. While computing the PS between each treatment cluster and all control

clusters, one can compute the difference in the level-two covariates between the pair of clusters

being compared and include the difference in covariates as predictors of the PS. This proposal has
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the potential to extend the fractional regression approach to account for covariates. We intend to

explore this proposal in the future.

Finally, researchers in the behavioral sciences increasingly utilize more complex designs than

two-level hierarchical models. For the PS to gain widespread use in these additional contexts, it is

essential to extend computation of the PS to more contexts. We believe the fractional regression

approach can be extended to variety of contexts. However, the exact specifications for PS compu-

tation and requirements for adequate inference would vary by design. Hence, we do not lay out the

different specifications and requirements here. We intend to explore some of these specifications in

the future.
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